Advertisement

Research of Time-Delay Chaotic Systems via Linear Feedback

  • Hua Wang
  • Xin Wang
  • Xianhai Shen
  • Xuliang Zhang
Part of the Communications in Computer and Information Science book series (CCIS, volume 324)

Abstract

Based on the Razumikhin theorem of time-delay systems, this paper discusses chaos control and synchronization of chaotic systems with time-varying lags. A novel method for time-delay chaotic systems is derived. Linear and feasible controller is designed to control and synchronize Lorenz system with time-varying lags. The proposed controller can realize chaos control even though there exist unknown time-varying lags. This method can be applied to a class of systems with different time-varying delays too. Numerical simulation results are given to show the effectiveness of the proposed method.

Keywords

Lorenz system Chaos Synchronization Lyapunov-Razumikhin function Time-delay Linear controller 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Udaltsov, V.S., Goedgebuer, J.P., Larger, L., Cuenot, J.B., Levy, P., Rhodes, W.T.: Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information. Opt. Spectrosc. 95(1), 114–118 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lu, J.A., Wu, X.Q., Lu, J.: Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305, 365–370 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Sliding mode control for chaotic systems based on LMI. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1410–1417 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, H., Han, Z.Z., Zhang, W., Xie, Q.Y.: Chaotic synchronization and secure communication based on descriptor observer. Nonlinear Dyn. 57, 69–73 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yassen, M.T.: Adaptive chaos control and synchronization for uncertain new chaotic dynamical system. Phys. Lett. A 350, 36–43 (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Wang, F.Q., Liu, C.X.: Synchronization of unified chaotic system based on passive control. Physica D 225, 55–60 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, G.H.: Projective synchronization of chaotic system using backstepping control. Chaos Solitons Fractals 29, 490–494 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Tao, C.H., Liu, X.F.: Feedback and adaptive control and synchronization of a set of chaotic and hyperchaotic systems. Chaos, Solutions and Fractals 32, 1572–1581 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cao, J.D., Lu, J.Q.: Adaptive synchronization of neural networks with or without time-varying delay. Chaos 16(1), 013133 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tavazoei, M.S., Haeri, M.: Determination of active sliding mode controller parameters in synchronizing different chaotic systems. Chaos Solitons Fractals 32, 583–591 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yan, J.J., Hung, M.L., Liao, T.L.: Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters. J. Sound Vibration 298, 298–306 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, H., Han, Z.Z., Zhang, W., Xie, Q.Y.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Anal: Real World Appl. 10(5), 715–722 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF. Nonlinear Anal: Real World Appl. 10(5), 2842–2849 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, H., Han, Z.Z., Zhang, W., Xie, Q.Y.: Chaos control and synchronization of unified chaotic systems via linear control. Journal of Sound and Vibration 320, 365–372 (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, H., Han, Z.Z., Zhen, M.: Synchronization of hyperchaotic systems via linear control. Commun. Nonlinear Sci. Numer. Simulat. 15, 1910–1920 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Sun, J.: Global synchronization criteria with channel time-delay for chaotic time-delay systems. Chaos, Solitons & Fractals 21, 967–975 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, X.H., Cui, Z.Y., Zhu, Y.Y.: Synchronization and circuit experiment simulation of chaotic time-delay systems. In: IEEE 2009 Pacific-Asia Conference on Circuits, Communications and System (2009)Google Scholar
  18. 18.
    Li, L.X., Peng, H.P., Yang, Y.X., Wang, X.D.: On the chaotic synchronization of Lorenz systems with time-varying lags. Chaos, Solitons and Fractals 41, 783–794 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lu, J.Q., Cao, J.D.: Adaptive Stabilization and Synchronization for Chaotic Lur’e Systems With Time-Varying Delay. IEEE Transactions on Circuits and Systems-I:Regular Paper 5(35), 1347–1357 (2008)MathSciNetGoogle Scholar
  20. 20.
    Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: Master-slave synchronization of Lure systems with time-delay. Int. J. Bifurcat Chaos 11(6), 1707–1722 (2001)CrossRefGoogle Scholar
  21. 21.
    Razumikhin, B.S.: On the stability of systems with a delay. Prikl. Mat. Mekh 20, 500–512 (1956) (Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hua Wang
    • 1
  • Xin Wang
    • 1
  • Xianhai Shen
    • 1
  • Xuliang Zhang
    • 1
  1. 1.School of Mechatronics Engineering and Automation, Shanghai Key Laboratory of Power Station Automation TechnologyShanghai UniversityShanghaiChina

Personalised recommendations