Advertisement

A Robust Physics-Based 3D Soft Tissue Parameters Estimation Method for Warping Dynamics Simulation

  • Xiangyun Liao
  • Zhiyong Yuan
  • Zhaoliang Duan
  • Weixin Si
  • Si Chen
  • Sijiao Yu
  • Jianhui Zhao
Part of the Communications in Computer and Information Science book series (CCIS, volume 323)

Abstract

Soft tissue warping is one of the key technologies in dynamic simulation of many surgical procedures. To achieve high performance simulation of 3D soft tissue warping, the research of physical parameters estimation of the warping model is of great significance. Through the construction of parameters estimation platform which consists of an optical tracking system PPT2 (Precision Position Tracker with 2 Cameras) and pressure acquisition devices, we obtain the nodal displacements of tetrahedron finite element model and external forces on it. Then we calculate the parameters of 3D soft tissue by using reverse engineering method and verify the parameters by comparing the calculated nodal displacements and the measured nodal displacements of the soft tissue. The experimental results show that the Physics-based 3D soft tissue parameters estimation method we proposed have achieve accurate agreement of calculated nodal displacements and the measured nodal displacements and it has the properties of accuracy and robust;

Keywords

soft tissue warping Physics-based 3D soft tissue parameters estimation method reverse engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nealen, A., Muller, M., Keiser, R., Boxerman, E., Carlson, M.: Physically based deformable models in computer graphics. Computer Graphics Forum 25(4), 809–836 (2006)CrossRefGoogle Scholar
  2. 2.
    Schoner, J.L., Lang, J., Seidel, H.-P.: Measurement-based interactive simulation of viscoelastic solids. Computer Graphics Forum (Proc. Eurographics) 23(3), 547–556 (2004)CrossRefGoogle Scholar
  3. 3.
    Wang, H., O’Brien, J.F., Ramamoorthi, R.: Data-driven elastic models for cloth: modeling and measurement. ACM Transactions on Graphics 30(4), Article 71 (July 2011)Google Scholar
  4. 4.
    Kim, T.-Y., Vendrovsky, E.: DrivenShape – a date-driven approach for shape deformation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation, pp. 49–55Google Scholar
  5. 5.
    Bickel, B., Bacher, M., Otaduy, M.A., Matusik, W., Pfister, H., Gross, M.: Caputre and modeling of nonlinear heterogeneous soft tissue. ACM Transactions on Graphics 28(3), Article 89 (August 2009)Google Scholar
  6. 6.
    Sueda, S., Kaufman, A., Pai, D.K.: Musculotendon simulation for hand animation. ACM Trans. Graph. (Proc. SIGGRAPH) 27(3) (2008)Google Scholar
  7. 7.
    Peterlík, L., Sedef, M., Basdogan, C., Matyska, L.: Real-time visio-haptic interaction with static soft tissue models having geometric and material nonlinearity. Computers & Graphics 34, 43–54 (2010)CrossRefGoogle Scholar
  8. 8.
    Park, S.I., Hodgins, J.K.: Capturing and animating skin deformation in human motion. ACM Transaction on Graphics (SIGGRAPH 2006) 25(3), 881–889 (2006)CrossRefGoogle Scholar
  9. 9.
    Tautges, J., Zinke, A., Kruger, B., Baumann, J., Weber, A., Helten, T., Muller, M., Seidel, H.-P., Eberhardt, B.: Motion reconstruction using sparse accelerometer data. ACM Transactions on Graphics 30(3), Article 18 (May 2011)Google Scholar
  10. 10.
    Samur, E., Sedef, M., Basdogan, C., Avtan, L., Duzgun, O.: A robotic indenter for minimally invasive measurement and characterization of soft tissue response. Medical Image Analysis 11, 361–373 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiangyun Liao
    • 1
  • Zhiyong Yuan
    • 1
  • Zhaoliang Duan
    • 1
  • Weixin Si
    • 1
  • Si Chen
    • 1
  • Sijiao Yu
    • 1
  • Jianhui Zhao
    • 1
  1. 1.School of ComputerWuhan UniversityWuhanChina

Personalised recommendations