Advertisement

Analyzing Effects of Ankle-Foot Parameters on Passive Bipeds Based on Dynamic Walking Modeling

  • Jingeng Mai
  • Yue Gao
  • Yan Huang
  • Qining Wang
  • Lin Zhang
Part of the Communications in Computer and Information Science book series (CCIS, volume 323)

Abstract

Though people’s usual gaits tend to be natural and simple, the theoretical modeling and analysis are complicated based on the remarkable fact that the walking motion is a complex dynamic phenomenon. In this paper, we build a passive dynamic bipedal walking model with flat feet and compliant ankle joints. The bipedal walker travels on a slope actuated by the gravity. We analyze effects of ankle-foot parameters on walking characteristics based on dynamic walking modeling. Simulation results demonstrate that the model can perform stable walking cycle. The effects of ankle-foot parameters on motion characteristics with different ankle stiffness are shown in detail.

Keywords

Passive dynamic walking bipedal walking modeling ankle stiffness ankle-foot parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwan, M., Hubbard, M.: Optimal foot shape for a passive dynamic biped. J. Theor. Biol. 248, 331–339 (2007)CrossRefGoogle Scholar
  2. 2.
    Wang, Q., Huang, Y., Wang, L.: Passive dynamic walking with flat feet and ankle compliance. Robotica 28(3), 413–425 (2010)CrossRefGoogle Scholar
  3. 3.
    Tlalolini, D., Chevallereau, C., Aoustin, Y.: Comparison of different gaits with rotation of the feet for a planar biped. Robot. Auton. Syst. 57, 371–383 (2008)CrossRefGoogle Scholar
  4. 4.
    Ker, R.F., Alexander, R.M., Bennett, M.B.: Why are mammalian tendons so thick? J. Zool. London 216, 309–324 (1988)CrossRefGoogle Scholar
  5. 5.
    Hoboelen, D.G.E., Wisse, M.: Ankle actuation for limit cycle walkers. Int. J. Robot. Res. 27(6), 709–735 (2008)CrossRefGoogle Scholar
  6. 6.
    Owaki, D., Osuka, K., Ishiguro, A.: Gait transition between passive dynamic walking and running by changing the body elasticity. In: Proc. of the SICE Annual Conference, pp. 2513–2518 (2008)Google Scholar
  7. 7.
    Huang, Y., Wang, Q., Chen, B., Xie, G., Wang, L.: Modeling and gait selection of passivity-based seven-link bipeds with dynamic series of walking phases. Robotica 30, 39–51 (2012)CrossRefGoogle Scholar
  8. 8.
    Vukobratovic, M., Frank, A., Juricic, D.: On the stability of biped locomotion. IEEE Trans. Biomedical Eng. 17(1), 25–36 (1970)CrossRefGoogle Scholar
  9. 9.
    McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9, 68–82 (1990)CrossRefGoogle Scholar
  10. 10.
    Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)CrossRefGoogle Scholar
  11. 11.
    Wisse, M., Feliksdal, G., van Frankenhuyzen, J., Moyer, B.: Passive based walking robot - Denise, a simple, efficient, and lightweight biped. IEEE Robot. Autom. Mag. 14(2), 52–62 (2007)CrossRefGoogle Scholar
  12. 12.
    Wang, Q., Huang, Y., Zhu, J., Wang, L., Lv, D.: Effects of foot shape on energetic efficiency and dynamic stability of passive dynamic biped with upper body. Int. J. Hum. Robot. 7(2), 295–313 (2010)CrossRefGoogle Scholar
  13. 13.
    Ishikawa, M., Komi, P.V., Grey, M.J., Lepola, V., Bruggemann, G.: Muscle-tendon interaction and elastic energy usage in human walking. J. Appl. Physiology 99, 603–608 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jingeng Mai
    • 1
    • 2
  • Yue Gao
    • 2
  • Yan Huang
    • 2
  • Qining Wang
    • 2
  • Lin Zhang
    • 1
  1. 1.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina
  2. 2.Intelligent Control Laboratory, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations