Advertisement

Wave-Based Reflections Reducing Approach for Bilateral Teleoperation

  • Min Zheng
  • Wei Xiao
  • Qinghai Chen
Part of the Communications in Computer and Information Science book series (CCIS, volume 323)

Abstract

The wave-based method can guarantee the passivity of the bilateral teleoperation system, but the ensuing wave reflections will deteriorate the operation performance. This paper presents a new wave-based bilateral teleoperation structures to attenuate the wave reflection, at the same time, by scaling the structure parameters to improve the force and speed tracking performance. And according to the wave scattering theory, passivity of the new structure is analyzed. Experiments show that the proposed method not only guarantees the stability of the system, but also improves the position tracking and force feedback performance.

Keywords

Teleoperation Wave variable Passivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R., Spong, M.: Asymptotic stability for force reflecting teleoperators with time delay. In: Proceedings IEEE International Conference on Robotic Automation, vol. 3, pp. 1618–1625 (1989)Google Scholar
  2. 2.
    Anderson, R., Spong, M.: Bilateral control of teleoperators with time delay. IEEE Transactions on Automatic Control 34(5), 494–501 (1989)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Niemeyer, G., Slotine, J.: Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering 16(1), 152–162 (1991)CrossRefGoogle Scholar
  4. 4.
    Benedetti, C., Franchini, M., Fiorini, P.: Stable tracking in variable time-delay teleoperation. In: Proceedings IEEE International Conference on Intelligent Robots Systems, vol. 3, pp. 2252–2257 (2001)Google Scholar
  5. 5.
    Ching, H.: Internet-based bilateral teleoperation. Georgia Institute of Technology, Atlanta (2006)Google Scholar
  6. 6.
    Smith, A.C., Hashtrudi-Zaad, K.: Smith Predictor Type Control Architectures for Time Delayed Teleoperation. Journal of Robotic Research, 152–162 (2006)Google Scholar
  7. 7.
    Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica 42(2), 2035–2057 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Uchimura, Y., Yakoh, T.: Bilateral robot system on the real-time network structure. IEEE Transactions on Industrial Electronics 51(5), 940–946 (2004)CrossRefGoogle Scholar
  9. 9.
    Oboe, R.: Web-interfaced, force-reflecting teleoperation systems. IEEE Transactions on Industrial Electronics 48(6), 1257–1265 (2001)CrossRefGoogle Scholar
  10. 10.
    Slama, T., Trevisani, A., Aubry, D., Oboe, R., Kratz, F.: Experimental analysis of an Internet-based bilateral teleoperation system with motion and force scaling using a model predictive controller. IEEE Transactions on Industrial Electronics 55(9), 3290–3299 (2008)CrossRefGoogle Scholar
  11. 11.
    Tian, D., Yashiro, D., Ohnishi, K.: Haptic transmission by weighting control under time-varying communication delay. IET Control Theory 6(3), 420–429 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Natori, K., Tsuji, T., Ohnishi, K.: Time-Delay Compensation by Communication Disturbance Observer for Bilateral Teleoperation Under Time-Varying Delay. IEEE Transactions on Industrial Electronics 57(3), 1050–1062 (2010)CrossRefGoogle Scholar
  13. 13.
    Nuno, E., Basanez, L., Ortega, R., Spong, M.W.: Position tracking for nonlinear teleoperators with variable time delay. I. The Journal of Robotic Research 28(7), 895–910 (2009)CrossRefGoogle Scholar
  14. 14.
    Kawashima, K., Tadano, K., Wang, C., Sankaranarayanan, G., Hannaford, B.: Bilateral teleoperation with time delay using modified wave variable based controller. In: Proceedings IEEE International Conference on Robotic Automation, pp. 4326–4331 (2009)Google Scholar
  15. 15.
    Chopra, N., Berestesky, P., Spong, M.W.: Bilateral teleoperation over unreliable communication networks. IEEE Transactions on Control Systems Technology 16(2), 304–313 (2008)CrossRefGoogle Scholar
  16. 16.
    Huijun, L., Aiguo, S.: Virtual-environment modeling and correction for forcereflecting teleoperation with time delay. IEEE Transactions on Industrial Electronics 16(2), 304–313 (2008)Google Scholar
  17. 17.
    Bate, L., Cook, C.D., Li, Z.: Reducing Wave-Based Teleoperator Reflections for Unknown Environments. IEEE Transactions on Industrial Electronics 58(2), 392–397 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Min Zheng
    • 1
  • Wei Xiao
    • 1
  • Qinghai Chen
    • 1
  1. 1.Shanghai Key Laboratory of Power Station Automation TechnologyCollege of Mechatronic Engineering and Automation, Shanghai UniversityShanghaiChina

Personalised recommendations