Skip to main content

Spatial Computing

How Spatial Structures Replace Computational Effort

  • Chapter
  • First Online:
Cognitive and Linguistic Aspects of Geographic Space

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

At the Advanced Study Institute on Cognitive and Linguistic Aspects of Geographic Space in Las Navas del Marqués in July 1990, I presented a chapter on Qualitative Spatial Reasoning. In that chapter, I suggested that spatial inference engines might provide the basis for rather general cognitive capabilities inside and outside the spatial domain. In the present chapter, I will follow up on this perspective and I will illustrate the ways in which research in spatial cognition has progressed towards understanding spatial reasoning and spatial computing in a more literal sense: using a spatial substrate. The chapter presents a progression of approaches to spatial reasoning from purely descriptive to increasingly spatially structured. It demonstrates how spatial structures are capable of replacing computational processes. It discusses how these approaches could be developed and implemented in a way that may help us to better understand higher-level spatial abilities of cognitive systems that are frequently attributed to the right cerebral hemisphere in humans. The chapter concludes by discussing the special role of space and time for cognition and advocates a thorough overall analysis of the specific problem to be solved to identify the most suitable approach to computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.sfbtr8.spatial-cognition.de/project/r3/sparq/ (accessed: 1 Jan 2012).

References

  • Allen JF (1983) Maintaining knowledge about temporal intervals. CACM 26(11):832–843

    Article  Google Scholar 

  • Balbiani P, Condotta J-F, Ligozat G (2000) Reasoning about generalized intervals; preconvex relations and tractability. In: Proceedings of TIME-2000 conference, pp 23–30

    Google Scholar 

  • Bhatt M, Lee JH, Schultz C (2011) CLP(QS): a declarative spatial reasoning framework. In: Egenhofer MJ, Giudice NA, Moratz R, Worboys MF (eds) COSIT’11, LNCS 6899. Springer, Heidelberg, pp 210–230

    Google Scholar 

  • Cohn AG, Hazarika SM (2001) Qualitative spatial representation and reasoning: an overview. Fundamenta Informaticae 43:2–32

    Google Scholar 

  • Condotta JF, Saade M, Ligozat G (2006) A generic toolkit for n-ary qualitative temporal and spatial calculi. In: TIME’06. IEEE Computer Society, Washington, pp 78–86 ISBN 0-7695-2617-9

    Google Scholar 

  • DeHon A, Giavitto J-L, Gruau F (2007) 06361 Executive report — computing media languages for space-oriented computation. In: DeHon A, Giavitto J-L, Gruau F (eds) 06361 Abstracts collection—computing media languages for space-oriented computation, Schloss Dagstuhl. http://drops.dagstuhl.de/opus/volltexte/2007/1026

  • Edelman S, Intrator N (2000) Coarse coding of shape fragments + retinotopy ~ representation of structure. Spat Vis 13:255–264

    Article  Google Scholar 

  • Egenhofer MJ, Franzosa RD (1991) Point set topological relations. Int J Geogr Inf Syst 5:161–174

    Article  Google Scholar 

  • Freksa C (1991a) Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh M, Travé-Massuyès L (eds) Decision support systems and qualitative reasoning. North-Holland, Amsterdam, pp 181–187

    Google Scholar 

  • Freksa C (1991b) Qualitative spatial reasoning. In: Mark DM, Frank AU (eds) Cognitive and linguistic aspects of geographic space. Kluwer, Dordrecht, pp 361–372

    Chapter  Google Scholar 

  • Freksa C (1992a) Temporal reasoning based on semi-intervals. Artif Intell 54:199–227

    Article  Google Scholar 

  • Freksa C (1992b) Using orientation information for qualitative spatial reasoning. In: Frank AU, Campari I, Formentini U (eds) Theories and methods of spatio-temporal reasoning in geographic space, LNCS 639. Springer, Berlin, pp 162–178

    Chapter  Google Scholar 

  • Freksa C, Barkowsky T (1996) On the relation between spatial concepts and geographic objects. In: Burrough P, Frank A (eds) Geographic objects with indeterminate boundaries. Taylor and Francis, London, pp 109–121

    Google Scholar 

  • Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7:155–170

    Article  Google Scholar 

  • Greenwold S (2003) Spatial computing. Manuscript submitted to school of architecture and planning, Massachusetts Institute of Technology, Cambridge. http://acg.media.mit.edu/people/simong/. Accessed 1 Jan 2012

  • Guesgen HW (1989) Spatial reasoning based on Allen’s temporal logic. ICSI TR-89-049. International Computer Science Institute, Berkeley

    Google Scholar 

  • Hamblin CL (1972) Instants and intervals. In: Fraser JT, Haber FC, Müller GH (eds) The study of time. Springer, Berlin, pp 324–331

    Chapter  Google Scholar 

  • Hwang A (2012) http://albert-hwang.com/projects/spatial-computing/. Accessed 1 Jan 2012)

  • Kosslyn SM (1987) Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev 94:148–175

    Article  Google Scholar 

  • Lang W, Lehmhus D, van der Zwaag S, Dorey R (2011) Sensorial materials—a vision about where progress in sensor integration may lead to. Sens Actuators, A 171(1):1–2

    Article  Google Scholar 

  • Ligozat G (1993) Qualitative triangulation for spatial reasoning. In: Campari I, Frank AU (eds) COSIT 1993 LNCS 716. Springer, Heidelberg, pp 54–68

    Google Scholar 

  • Liu W, Li S (2011) Reasoning about cardinal directions between extended objects: the NP-hardness result. Artif Intell 175:2155–2169

    Article  Google Scholar 

  • Moratz R, Renz J, Wolter D (2000) Qualitative spatial reasoning about line segments. In: Proceedings of ECAI 2000, pp 234–238

    Google Scholar 

  • Moratz R, Tenbrink T, Fischer F, Bateman J (2003) Spatial knowledge representation for human-robot interaction. In: Freksa C, Brauer W, Habel C, Wender KF (eds) Spatial cognition III – Routes and navigation, human memory and learning, spatial representation and spatial reasoning, LNAI 2685. Springer, Heidelberg, pp 263–286

    Google Scholar 

  • Nebel B, Bürckert HJ (1995) Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. JACM 42(1):43–66

    Article  Google Scholar 

  • Newell A (1982) The knowledge level. Artif Intell 18(1):87–127

    Article  Google Scholar 

  • Nicod J (1924) Geometry in the sensible world. Doctoral thesis, Sorbonne, English translation in Geometry and Induction, Routledge and Kegan Paul, 1969

    Google Scholar 

  • Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection. In: Proceedings of 3rd international conference on knowledge representation and reasoning. Morgan Kaufman, Los Altos, pp 55–66

    Google Scholar 

  • Rosch E (1978) Principles of categorization. In: Rosch E, Lloyd BB (eds) Cognition and categorization. Erlbaum, Hillsdale

    Google Scholar 

  • Schultheis H, Barkowsky T (2011) Casimir: an architecture for mental spatial knowledge processing. Top Cogn Sci 3:778–795

    Article  Google Scholar 

  • Schwartz JT, Sharir M (1983) On the “piano movers” problem I: the case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun Pure Appl Math 36:345–398

    Article  Google Scholar 

  • Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    Article  Google Scholar 

  • Skiadopoulos S, Koubarakis M (2004) Composing cardinal direction relations. Artif Intell 152:143–171

    Article  Google Scholar 

  • Sloman A (1971) Interactions between philosophy and artificial intelligence: the role of intuition and non-logical reasoning in intelligence. Artif Intell 2:209–225

    Article  Google Scholar 

  • Sloman A (1985) Why we need many knowledge representation formalisms. In: Bramer M (ed) Research and development in expert systems. Proceedings of BCS expert systems conference 1984. Cambridge University Press, Cambridge, pp 163–183

    Google Scholar 

  • Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46(2):234–240

    Article  Google Scholar 

  • Van de Weghe N, Kuijpers B, Bogaert P, De Maeyer P (2005) A qualitative trajectory calculus and the composition of its relations. In: Proceedings of geospatial semantics, vol 3799, pp 60–76

    Google Scholar 

  • Wallgruen JO, Frommberger L, Wolter D, Dylla F, Freksa C (2007) Qualitative spatial representation and reasoning in the SparQ toolbox. In: Barkowsky T, Knauff M, Ligozat G, Montello D (eds.) Spatial cognition V: reasoning, action, interaction, LNAI 4387. Springer, Heidelberg, pp 39–58

    Google Scholar 

  • Westphal M, Woelfl S, Gantner Z (2009) GQR: a fast solver for binary qualitative constraint networks. In: AAAI spring symposium on benchmarking of qualitative spatial and temporal reasoning systems, Stanford

    Google Scholar 

  • Wolter D, Wallgruen JO (2012) Qualitative spatial reasoning for applications: New challenges and the SparQ toolbox, In: Hazarika SM (ed) Qualitative spatio-temporal representation and reasoning: Trends and future directions. IGI Global, Hershey. doi: 10.4018/978-1-61692-868-1

    Google Scholar 

  • Yang C, Goodchild M, Huang Q, Nebert D, Raskin R, Xu Y, Bambacus M, Fay D (2011) Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing? Int J Digit Earth 4:4

    Google Scholar 

  • Zimmermann K (1995). Measuring without measures. The Δ-Calculus. In: Frank AU, Kuhn W (eds) COSIT 1995, LNCS 988. Springer, Heidelberg, pp 59–67

    Google Scholar 

  • Zuse K (1969) Rechnender Raum: Schriften zur Datenverarbeitung. Vieweg, Braunschweig

    Book  Google Scholar 

Download references

Acknowledgments

I am grateful for valuable and detailed comments on earlier versions of this chapter from Thomas Barkowsky, Mehul Bhatt, Stefano Borgo, Holger Schultheis, Thora Tenbrink, Diedrich Wolter, several anonymous reviewers, and the editors of this book. Generous support from the German Research Foundation to the Spatial Cognition Research Center SFB/TR 8 Bremen and Freiburg is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Freksa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freksa, C. (2013). Spatial Computing. In: Raubal, M., Mark, D., Frank, A. (eds) Cognitive and Linguistic Aspects of Geographic Space. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34359-9_2

Download citation

Publish with us

Policies and ethics