Skip to main content
Book cover

fMRI pp 25–36Cite as

The Electrophysiological Background of the fMRI Signal

  • Chapter
  • First Online:
  • 4437 Accesses

Abstract

The ability to non-invasively study the architecture and function of the human brain constitutes one of the most exciting cornerstones for modern medicine, psychology and neuroscience. Current in vivo imaging techniques not only provide clinically essential information and allow new forms of treatment but also reveal insights into the mechanisms behind brain function and malfunction. This supremacy of modern imaging rests on its ability to study the structural properties of the nervous system simultaneously with the functional changes related to neuronal activity. As a result, imaging allows us to combine information about the spatial organization and connectivity of the nervous system with information about the underlying neuronal processes and provides the only means to link perception and cognition with the neural substrates in the human brain. Functional imaging techniques build on the interconnections of cerebral blood flow (CBF), the brain’s energy demand and the neuronal activity (for reviews on this topic, see Heeger and Ress 2002; Logothetis 2002; Logothetis and Wandell 2004; Lauritzen 2005). Indeed, elaborate mechanisms exist to couple changes in CBF and blood oxygenation to the maintenance and restoration of ionic gradients and the synthesis, transport and reuptake of neurotransmitters. More than 125 years ago, Angelo Mosso had already realized that there must be a relation between energy demand and CBF when he observed increasing brain pulsations in a patient with a permanent skull defect performing a mental task (Mosso 1881). Similar observations on the coupling of blood flow to neuronal activity (from experiments on animals) led Roy and Sherrington to make the insightful statement that “… the chemical products of cerebral metabolism contained in the lymph that bathes the walls of the arterioles of the brain can cause variations of the caliber of the cerebral vessels: that is, in this reaction, the brain possesses an intrinsic mechanism by which its vascular supply can be varied locally in correspondence with local variations of functional activity” (Roy and Sherrington 1890).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrian ED, Zotterman Y (1929) The impulses produced by sensory nerve endings, part 2. The response of a single end-organ. J Physiol 61:151–171

    Google Scholar 

  • Ajmone-Marsan C (1965) Electrical activity of the brain: slow waves and neuronal activity. Isr J Med Sci 1:104–117

    Google Scholar 

  • Bedard C, Kroger H et al (2004) Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 86:1829–1842

    Article  CAS  PubMed  Google Scholar 

  • Bedard C, Kroger H et al (2006) Model of low-pass filtering of local field potentials in brain tissue. Phys Rev E Stat Nonlin Soft Matter Phys 73:051911

    Article  CAS  PubMed  Google Scholar 

  • Buchwald JS, Grover FS (1970) Amplitudes of background fast activity characteristic of specific brain sites. J Neurophysiol 33:148–159

    CAS  PubMed  Google Scholar 

  • Buchwald JS, Halas ES et al (1966) Relationships of neuronal spike populations and EEG activity in chronic cats. Electroencephalogr Clin Neurophysiol 21:227–238

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Bickford RG et al (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026

    CAS  PubMed  Google Scholar 

  • Calvert GA (2001) Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb Cortex 11:1110–1123

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Contreras D et al (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    CAS  PubMed  Google Scholar 

  • Freeman W (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Fried I, MacDonald KA et al (1997) Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18:753–765

    Article  CAS  PubMed  Google Scholar 

  • Fromm GH, Bond HW (1964) Slow changes in the electrocorticogram and the activity of cortical neurons. Electroencephalogr Clin Neurophysiol 17:520–523

    Article  CAS  PubMed  Google Scholar 

  • Fromm GH, Bond HW (1967) The relationship between neuron activity and cortical steady potentials. Electroencephalogr Clin Neurophysiol 22:159–166

    Article  CAS  PubMed  Google Scholar 

  • Goense J, Logothetis N (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640

    Article  CAS  PubMed  Google Scholar 

  • Gold L, Lauritzen M (2002) Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocor-tical function. Proc Natl Acad Sci USA 99:7699–7704

    Article  CAS  PubMed  Google Scholar 

  • Gold C, Henze DA et al (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95:3113–3128

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, Konig P et al (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  CAS  PubMed  Google Scholar 

  • Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3:142–151

    Article  CAS  PubMed  Google Scholar 

  • Heeger DJ, Huk AC et al (2000) Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci 3:631–633

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeyer HW, Enager P et al (2007) Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers. J Cereb Blood Flow Metab 27:575–587

    Article  PubMed  Google Scholar 

  • Juergens E, Guettler A et al (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129:247–259

    Article  CAS  PubMed  Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 23:315–341

    Article  CAS  PubMed  Google Scholar 

  • Kayser C, Logothetis NK (2007) Do early sensory cortices integrate cross-modal information? Brain Struct Funct 212:121–132

    Article  PubMed  Google Scholar 

  • Kayser C, Kim M et al (2004) A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli. Cereb Cortex 14:881–891

    Article  PubMed  Google Scholar 

  • Kayser C, Petkov CI et al (2007a) Tuning to sound frequency in auditory field potentials. J Neurophysiol 98:1806–1809

    Article  PubMed  Google Scholar 

  • Kayser C, Petkov CI et al (2007b) Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 27:1824–1835

    Article  CAS  PubMed  Google Scholar 

  • Kayser C, Petkov CI et al (2008) Visual modulation of neurons in auditory cortex. Cereb Cortex 18:1560–1574. doi:10.1093/cercor/bhm187

    Article  PubMed  Google Scholar 

  • Kreiman G, Koch C et al (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3:946–953

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen M (2005) Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev Neurosci 6:77–85

    Article  CAS  PubMed  Google Scholar 

  • Lauritzen M, Gold L (2003) Brain function and neurophysiological correlates of signals used in functional neuroimaging. J Neurosci 23:3972–3980

    CAS  PubMed  Google Scholar 

  • Legatt AD, Arezzo J et al (1980) Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials. J Neurosci Methods 2:203–217

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357:1003–1037

    Article  PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls J et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Kayser C et al (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

    Article  CAS  PubMed  Google Scholar 

  • Luck SJ, Chelazzi L et al (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77:24–42

    CAS  PubMed  Google Scholar 

  • Mathiesen C, Caesar K et al (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512(Pt 2):555–566

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen C, Caesar K et al (2000) Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol 523(Pt 1):235–246

    Article  CAS  PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33:33–59

    Article  CAS  PubMed  Google Scholar 

  • Mosso A (1881) Ueber den Kreislauf des Blutes im Menschlichen Gehirn. von Veit, Leipzig

    Google Scholar 

  • Mukamel R, Gelbard H et al (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:951–954

    Article  CAS  PubMed  Google Scholar 

  • Niessing J, Ebisch B et al (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951

    Article  CAS  PubMed  Google Scholar 

  • Norup Nielsen A, Lauritzen M (2001) Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol 533:773–785

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Menon RS et al (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    Article  CAS  PubMed  Google Scholar 

  • Ranck JB (1963a) Analysis of specific impedance or rabbit cerebral cortex. Exp Neurol 7:153–174

    Article  PubMed  Google Scholar 

  • Ranck JB (1963b) Specific impedance of rabbit cerebral cortex. Exp Neurol 7:144–152

    Article  PubMed  Google Scholar 

  • Rauch A, Rainer G et al (2008) The effect of a serotonin induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci 108:6759–6764

    Article  Google Scholar 

  • Rees G, Friston K et al (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3:716–723

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA (1968) The electrical properties of metal microelectrodes. Proc IEEE 56:1065–1071

    Article  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol 11:85–108

    CAS  PubMed  Google Scholar 

  • Steriade M, Amzica F (1994) Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. J Neurophysiol 72:2051–2069

    CAS  PubMed  Google Scholar 

  • Steriade M, Amzica F et al (1998) Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J Neurophysiol 80:1456–1479

    CAS  PubMed  Google Scholar 

  • Stone J (1973) Sampling properties of microelectrodes assessed in the cat’s retina. J Neurophysiol 36:1071–1079

    CAS  PubMed  Google Scholar 

  • Thomsen K, Offenhauser N et al (2004) Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum. J Physiol 560:181–189

    Article  CAS  PubMed  Google Scholar 

  • Towe AL, Harding GW (1970) Extracellular microelectrode sampling bias. Exp Neurol 29:366–381

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kayser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kayser, C., Logothetis, N.K. (2013). The Electrophysiological Background of the fMRI Signal. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34342-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34342-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34341-4

  • Online ISBN: 978-3-642-34342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics