Skip to main content

Clinical Magnetoencephalography and fMRI

  • Chapter
  • First Online:
Book cover fMRI
  • 4308 Accesses

Abstract

Over the past two decades, numerous studies have demonstrated that functional magnetic resonance imaging (fMRI) conveniently maps brain activity, both at rest and during a task. The spatial resolution of fMRI in clinical scanners can exceed 1 mm in plane resolution. The temporal resolution, however, is limited to around 1 s or perhaps a few hundred milliseconds depending on the technique and the paradigm used. Today, in the clinical and research setting, MEG directly measures neuromagnetic activity at a high temporal resolution and supplements or replaces the spatial information provided by fMRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors SP, Simpson GV (2004) Geometrical interpretation of fmri-guided MEG/EEG inverse estimates. Neuroimage 22(1):323–332

    Article  PubMed  Google Scholar 

  • Beisteiner R, Gomiscek G et al (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7(5):1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Bittar RG, Olivier A et al (1999) Presurgical motor and somatosensory cortex mapping with functional magnetic ­resonance imaging and positron emission tomography. J Neurosurg 91(6):915–921

    Article  CAS  PubMed  Google Scholar 

  • Bowyer SM, Moran JE et al (2005) Language laterality determined by MEG mapping with MR-FOCUSS. Epilepsy Behav 6:235–241

    Article  PubMed  Google Scholar 

  • Breier JI, Simos PG et al (1999a) Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magnetoencephalography. Brain Topogr 12(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Breier JI, Simos PG et al (1999b) Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology 53(5):938–945

    Article  CAS  PubMed  Google Scholar 

  • Breier JI, Simos PG et al (2001) Language dominance in children as deter- mined by magnetic source imaging and the intracarotid amobarbital procedure: a comparison. J Child Neurol 16(2):124–130

    CAS  PubMed  Google Scholar 

  • Brookes MJ, Hale JR et al (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56(3):1082–1104

    Article  PubMed  Google Scholar 

  • Castillo EM, Simos PG et al (2001) Mapping of expressive language cortex using magnetic source imaging. Neurocase 7(5):419–422

    Article  CAS  PubMed  Google Scholar 

  • Cohen D (1968) Magnetic field measurements of human alpha rhythm. Science 161:784–786

    Article  CAS  PubMed  Google Scholar 

  • Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175(22):664–666

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11(2):202–208

    Article  CAS  PubMed  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of ­cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5(2):162–176

    Article  Google Scholar 

  • Dale AM, Liu AK et al (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  CAS  PubMed  Google Scholar 

  • de Pasquale F, Della Penna S et al (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci USA. 107(13):6040–6045

    Article  CAS  PubMed  Google Scholar 

  • Douw L, Schoonheim MM et al (2010) Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients. BMC Neurosci 11:103

    Article  PubMed  Google Scholar 

  • Douw L, Beisteiner R et al (2011) Cognition is related to resting-state small-world network topology: an magnetoencephalographic study. Neuroscience 175:169–177

    Article  CAS  PubMed  Google Scholar 

  • Erdler M, Windischberger C et al (2000) Supplementary motor area activation pre- ceding voluntary movement is detectable with a whole-scalp magnetoencephalography system. Neuroimage 11(6 Pt 1):697–707

    Article  CAS  PubMed  Google Scholar 

  • Erdler M, Windischberger C et al (2001) Dissociation of supplementary motor area and primary motor cortex in human subjects when comparing index and little finger ­movements with functional magnetic resonance imaging. Neurosci Lett 313(1–2):5–8

    Article  CAS  PubMed  Google Scholar 

  • Firsching R, Klug N et al (1992) Lesions of the sensorimotor region: somatosensory evoked potentials and ultrasound guided surgery. Acta Neurochir (Wien) 118(3–4):87–90

    Article  CAS  Google Scholar 

  • Firsching R, Bondar I et al (2002) Practicability of ­magnetoencephalography-guided neuronavigation. Neurosurg Rev 25(1–2):73–78

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, van der Kouwe A et al (2004) Cerebral Cortex 14:11–22

    Article  PubMed  Google Scholar 

  • Floel A, Knecht S et al (2001) Language and spatial attention can lateralize to the same hemisphere in healthy humans. Neurology 57(6):1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Ganslandt O, Fahlbusch R et al (1999) Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg 91(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Ghuman AS, McDaniel JR et al (2011) A wavelet-based method for measuring the oscillatory dynamics of resting-state functional connectivity in MEG. Neuroimage 56(1):69–77

    Article  PubMed  Google Scholar 

  • Gross J, Tass PA et al (2000) Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J Physiol 527(Pt 3):623–631

    Article  CAS  PubMed  Google Scholar 

  • Gross J, Kujala J et al (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci USA 98(2):694–699

    Article  CAS  PubMed  Google Scholar 

  • Hagmann P, Cammoun L et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7)

    Article  CAS  PubMed  Google Scholar 

  • Hämäläinen M, Hari R (2002) Magnetoencephalography. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, Amsterdam, p xvii, 877

    Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1984) Interpreting measured magnetic fields of the brain: estimates of current distributions. Technical Report TKK-F-A559. Helsinki University of Technology, Helsinki

    Google Scholar 

  • Hämäläinen M, Hari R et al (1993) Magnetoencepha-lography – theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Hari R (1991) On brain’s magnetic responses to sensory stimuli. J Clin Neurophysiol 8(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Forss N (1999) Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 354(1387):1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Hämäläinen H et al (1990) Separate finger representations at the human second somatosensory cortex. Neuroscience 37(1):245–249

    Article  CAS  PubMed  Google Scholar 

  • Hari R, Karhu J et al (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5(6):724–734

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka K, Nakasato N et al (1997) Striate cortical generators of the N75, P100 and N145 components localized by pattern reversal visual evoked magnetic fields. Tohoku J Exp Med 182(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Hillebrand A (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. Neuroimage 59(4):3909–3921

    Article  PubMed  Google Scholar 

  • Holodny AI, Nusbaum AO et al (1999) Correlation between the degree of contrast enhancement and the volume of peritumoral edema in meningiomas and malignant gliomas. Neuroradiology 41(11):820–825

    Article  CAS  PubMed  Google Scholar 

  • Holodny AI, Schulder M et al (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 21(8):1415–1422

    CAS  PubMed  Google Scholar 

  • Hoshiyama M, Kakigi R et al (1996) Somatosensory evoked magnetic fields following stimulation of the lip in humans. Electroencephalogr Clin Neurophysiol 100(2):96–104

    Article  CAS  PubMed  Google Scholar 

  • Hund M, Rezai AR et al (1997) Magnetoencephalographic mapping: basic of a new functional risk profile in the selection of patients with cortical brain lesions. Neurosurgery 40(5):936–942; discussion 942–943

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Shimizu H et al (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. Neuroimage 10(6):738–748

    Article  CAS  PubMed  Google Scholar 

  • Jannin P, Fleig OJ et al (2000) A data fusion environment for multimodal and multi-informational neuronavigation. Comput Aided Surg 5(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Jannin P, Morandi X et al (2002) Integration of sulcal and func­tional information for multimodal neuronavigation. J Neurosurg 96(4):713–723

    Article  PubMed  Google Scholar 

  • Kakigi R (1994) Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci Res 20(2):165–174

    Article  CAS  PubMed  Google Scholar 

  • Kamada K, Sawamura Y et al (2007) Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery 60:296–305

    Article  PubMed  Google Scholar 

  • Kober H, Nimsky C et al (2001a) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14(5):1214–1228

    Article  CAS  PubMed  Google Scholar 

  • Kober H, Möller M et al (2001b) New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp 14(4):236–250

    Article  CAS  PubMed  Google Scholar 

  • Lewine JD, Orrison WW Jr (1995) Magnetic source imaging: basic principles and applications in neuroradiology. Acad Radiol 2(5):436–440

    Article  CAS  PubMed  Google Scholar 

  • Liu AK, Dale AM et al (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Fukunaga M et al (2010) Large-scale spontaneous fluctuations and correlations in brain electrical activity observed with magnetoencephalography. Neuroimage 51(1):102–111

    Article  PubMed  Google Scholar 

  • Makela JP, Kirveskari E et al (2001) Three-dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip. Hum Brain Mapp 12(3):180–192

    Article  CAS  PubMed  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters SIAM. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  • Martino J, Honma SM et al (2011) Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 69(3):521–532

    Article  PubMed  Google Scholar 

  • McDonald CR, Thesen T et al (2009) Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia 50:2256–2266

    Article  PubMed  Google Scholar 

  • Merrifield WS, Simos PG et al (2007) Hemispheric lavvnguage ­dominance in magnetoencephalography: sensitivity, specificity, and data reduction techniques. Epilepsy Behav 10:120–128

    Article  PubMed  Google Scholar 

  • Mosher JC, Leahy RM (1998) Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11):1342–1354

    Article  CAS  PubMed  Google Scholar 

  • Mosher JC, Leahy RM et al (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46(3):245–259

    Article  CAS  PubMed  Google Scholar 

  • Nakasato N, Yoshimoto T (2000) Somatosensory, auditory, and visual evoked magnetic fields in patients with brain diseases. J Clin Neurophysiol 17(2):201–211

    Article  CAS  PubMed  Google Scholar 

  • Nakasato N, Seki K et al (1996) Clinical application of visual evoked fields using an MRI-linked whole head MEG system. Front Med Biol Eng 7(4):275–283

    CAS  PubMed  Google Scholar 

  • Panagiotis B (1999) Grand mal seizures with liver toxicity in a case of clozapine treatment. J Neuropsychiatry Clin Neurosci 11(1):117–118

    CAS  PubMed  Google Scholar 

  • Pantev C, Bertrand O et al (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94:26–40

    Article  CAS  PubMed  Google Scholar 

  • Papanicolaou AC, Simos PG et al (1999) Magneto-encephalographic mapping of the language-specific cortex. J Neurosurg 90(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Papanicolaou AC, Simos PG et al (2004) Magneto-encephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876

    Article  PubMed  Google Scholar 

  • Papanicolaou AC, Pazo-Alvarez P et al (2006) Functional neuroimaging with MEG: normative language profiles. Neuroimage 33:326–342

    Article  CAS  PubMed  Google Scholar 

  • Passaro AD, Rezaie R et al (2011) Optimizing estimation of hemispheric dominance for language using magnetic source imaging. Brain Res 1416:44–50

    Article  CAS  PubMed  Google Scholar 

  • Rezai AR, Hund M et al (1996) The interactive use of magnetoencephalography in stereotactic image-guided neurosurgery. Neurosurgery 39(1):92–102

    Article  CAS  PubMed  Google Scholar 

  • Rezai AR, Mogilner AY et al (1997) Integration of functional brain mapping in image-guided neurosurgery. Acta Neurochir Suppl 68:85–89

    CAS  PubMed  Google Scholar 

  • Roberts TP, Ferrari P et al (2000) Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol 17(2):57–64

    Article  CAS  PubMed  Google Scholar 

  • Schiffbauer H, Ferrari P et al (2001) Functional activity within brain tumors: a magnetic source imaging study. Neurosurgery 49(6):1313–1320; discussion 1320–1321

    Article  CAS  PubMed  Google Scholar 

  • Simos PG, Breier JI et al (1998) Assessment of functional cerebral laterality for language using magnetoencephalography. J Clin Neurophysiol 15:364–372

    Article  CAS  PubMed  Google Scholar 

  • Simos PG, Breier JI et al (1999a) Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation. Neuroreport 10(1):139–142

    Article  CAS  PubMed  Google Scholar 

  • Simos PG, Papanicolaou AC et al (1999b) Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg 91(5):787–796

    Article  CAS  PubMed  Google Scholar 

  • Simos PG, Castillo EM et al (2001) Mapping of receptive language cortex in bilingual volunteers by using magnetic source imaging. J Neurosurg 95(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1(1):3

    Article  PubMed  Google Scholar 

  • Szymanski MD, Rowley HA et al (1999) A hemispherically asymmetrical MEG response to vowels. Neuroreport 10(12):2481–2486

    Article  CAS  PubMed  Google Scholar 

  • Szymanski MD, Perry DW et al (2001) Magnetic source imaging of late evoked field responses to vowels: toward an assessment of hemispheric dominance for language. J Neurosurg 94(3):445–453

    Article  CAS  PubMed  Google Scholar 

  • Ugurbil K, Toth L et al (2003) How accurate is magnetic resonance imaging of brain function? Trends Neurosci 26(2):108–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Stufflebeam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stufflebeam, S.M. (2013). Clinical Magnetoencephalography and fMRI. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34342-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34342-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34341-4

  • Online ISBN: 978-3-642-34342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics