Skip to main content
Book cover

fMRI pp 239–267Cite as

The Perirhinal, Entorhinal, and Parahippocampal Cortices and Hippocampus: An Overview of Functional Anatomy and Protocol for Their Segmentation in MR Images

  • Chapter
  • First Online:

Abstract

It is well established that the medial temporal lobe (MTL) plays a critical role in forming memories of autobiographical events and world knowledge. Converging neuroscientific research suggests that each of the MTL subregions – that is, the hippocampus proper and perirhinal, entorhinal, and parahippocampal cortices – also performs other mnemonic and non-mnemonic functions. This functional specialization is highly relevant for the clinical diagnosis of patients with acquired brain damage and neurodegenerative disorders such as Alzheimer’s disease. This chapter briefly reviews the functional anatomy of the MTL and the neuropsychological syndrome of early Alzheimer’s disease. One of the greatest difficulties facing the continued neuroscientific and clinical investigation of the human MTL is the identification of its subregions on MR images. The last part of this chapter therefore describes the gross anatomy of the MTL and provides a protocol for the reliable segmentation of each subregion. The study of accurately anatomically delineated MTL subregions with different behavioral and imaging approaches is required to advance our understanding of the basic functions of the MTL and, correspondingly, the clinical relevance of lesions in this complex region.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Later research demonstrated that profound memory impairments were also associated with damage to diencephalic regions such as mammillary bodies or mediodorsal nucleus of the thalamus (Squire and Zola-Morgan 1988; Victor et al. 1989), although the nature of the memory impairment differed from amnesia following MTL damage.

  2. 2.

    In these experiments, an animal is presented with a sample stimulus during a learning phase. After a delay, the sample stimulus is presented again together with a novel stimulus. Intact recognition memory is demonstrated by the animal displacing either the sample object (delayed matching-to-sample) or the novel object (delayed nonmatching-to-sample).

  3. 3.

    It is tempting to hypothesize similar grid cell properties for human ERc neurons. To our knowledge, a single human fMRI study has found evidence consistent with this hypothesis. Doeller and colleagues (Doeller et al. 2010) found that BOLD activity in the human ERc had a sixfold sinusoidal relationship with “running” direction in a circular-shaped virtual environment. This pattern of activation corresponds to the symmetry of grid cell firing in rodent ERc and putatively reflects whether the participants ran in alignment or misalignment with the grid axes. The ERc was activated as part of a larger network showing these properties, which included the posterior and medial parietal, lateral temporal, and medial prefrontal cortices (Doeller et al. 2010; see also Jacobs et al. 2010).

  4. 4.

    The original discovery of “place cells” demonstrated that these cells they selectively fired according to the animal’s location in the environment (O’Keefe and Dostrovsky 1971), while later studies showed that firing patterns were also modulated by other factors such as motivational factors and environmental cues (Lipton and Eichenbaum 2008; see Eichenbaum et al. 1999 for a review).

  5. 5.

    The protocol assumes that in cases where the collateral sulcus cannot be visualized or is discontinuous, the lateral and medial PRc borders are determined on coronal slices anterior and posterior to the interrupted section, and that imaginary lines are drawn from these anterior and posterior levels to connect the lateral borders and the medial borders of the PRc.

Abbreviations

A:

Anterior

Ab:

Angular bundle (PHg white matter)

aCf:

Anterior calcarine fissure

al:

Alveus

Am:

Amygdala

bG:

Band of Giacomini

cf:

Crus of the fornix

Cs:

Collateral sulcus

di:

Hippocampal digitations

ERc:

Entorhinal cortex

Fg:

Fusiform gyrus

fi:

Fimbria

gA:

Gyrus ambiens

gS:

Gyrus of Schwalbe

HB:

Hippocampal body

Hf:

Hippocampal fissure

HH:

Hippocampal head

Hs:

Hippocampal sulcus

HT:

Hippocampal tail

I:

Inferior

ILg:

Intralimbic gyrus

Is:

Isthmus

ITg:

Inferotemporal gyrus

L:

Laterial

Lg:

Lingual gyrus

li-gm:

Limen insulae gray matter

li-wm:

Limen insulae white matter

M:

Medial

Mb:

Mammillary body

MTL:

Medial temporal lobe

OTs:

Occipitotemporal sulcus

P:

Posterior

Pu:

Pulvinar

PHc:

Parahippocampal cortex

PHg:

Parahippocampal gyrus

PRc:

Perirhinal cortex

qgc:

Quadrigeminal cistern

Rs:

Rhinal sulcus

S:

Superior

SAs:

Semiannular sulcus

SLg:

Semilunar gyrus

Sp:

Splenium

su:

Subiculum

TLV:

Temporal horn of lateral ventricle

TP:

Temporal pole

TR:

Transentorhinal cortex

U:

Uncus

Ug:

Uncinate gyrus

un:

Uncal notch

References

  • Acres K, Taylor KI et al (2009) Complementary ­hemispheric asymmetries in object naming and recognition: a voxel-based correlational study. Neuropsy­chologia 47:1836–1843

    Article  CAS  PubMed  Google Scholar 

  • Aggleton JP, Brown MW (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 22:425–489

    CAS  PubMed  Google Scholar 

  • Aggleton JP, Brown MW (2006) Interleaving brain systems for episodic and recognition memory. Trends Cogn Sci 10:455–463

    Article  PubMed  Google Scholar 

  • Aggleton JP, Mishkin M (1985) Mamillary-body lesions and visual recognition in monkeys. Exp Brain Res 58:190–197

    Article  CAS  PubMed  Google Scholar 

  • Aguirre GK, D’Esposito M (1999) Topographical dis-orientation: a synthesis and taxonomy. Brain 122:1613–1628

    Article  PubMed  Google Scholar 

  • Alvarado MC, Bachevalier J (2005a) Comparison of the effects of damage to the perirhinal and parahippocampal cortex on transverse patterning and location memory in rhesus macaques. J Neurosci 25:1599–1609

    Article  CAS  PubMed  Google Scholar 

  • Alvarado MC, Bachevalier J (2005b) Selective neurotoxic damage to the hippocampal formation impairs performance of the transverse patterning and location memory tasks in rhesus macaques. Hippocampus 15:118–131

    Article  PubMed  Google Scholar 

  • Alvarado MC, Wright AA et al (2002) Object and spatial relational memory in adult rhesus monkeys is impaired by neonatal lesions of the hippocampal formation but not the amygdaloid complex. Hippocampus 12:421–433

    Article  PubMed  Google Scholar 

  • Alzheimer’s Association (2011) 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 7:208–244

    Article  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, D.C

    Google Scholar 

  • Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  • Bachevalier J, Nemanic S (2008) Memory for spatial location and object-place associations are differently processed by the hippocampal formation, parahippocampal areas TH/TF and perirhinal cortex. Hippocampus 18:64–80

    Article  PubMed  Google Scholar 

  • Bakker A, Kirwan CB et al (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Aminoff E (2003) Cortical analysis of visual context. Neuron 38:347–358

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Aminoff E et al (2008) Scenes unseen: the parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. J Neurosci 28:8539–8544

    Article  CAS  PubMed  Google Scholar 

  • Barbeau E, Didic M et al (2004) Evaluation of visual recognition memory in MCI patients. Neurology 62:1317–1322

    Article  CAS  PubMed  Google Scholar 

  • Barense MD, Bussey TJ et al (2005) Functional specialization in the human medial temporal lobe. J Neurosci 25:10239–10246

    Article  CAS  PubMed  Google Scholar 

  • Barense MD, Gaffan D et al (2007) The human medial temporal lobe processes online representations of complex objects. Neuropsychologia 45:2963–2974

    Article  PubMed  Google Scholar 

  • Barense MD, Henson RNA et al (2010) Medial temporal lobe activity during complex discrimination of faces, objects, and scenes: effects of viewpoint. Hippocampus 20:389–401

    PubMed  Google Scholar 

  • Barrash J (1998) A historical review of topographical disorientation and its neuroanatomical correlates. J Clin Exp Neuropsychol 20:807–827

    Article  CAS  PubMed  Google Scholar 

  • Barrash J, Damasio H et al (2000) The neuroanatomical correlates of route learning impairment. Neuropsychologia 38:820–836

    Article  CAS  PubMed  Google Scholar 

  • Bellgowan PSF, Bandettini PA et al (2006) Improved BOLD detection in the medial temporal region using parallel imaging and voxel volume reduction. Neuroimage 29:1244–1251

    Article  PubMed  Google Scholar 

  • Blaizot X, Mansilla F et al (2010) The human parahippocampal region: I. Temporal pole cytoarchitectonic and MRI correlation. Cereb Cortex 20:2198–2212

    Article  CAS  PubMed  Google Scholar 

  • Bohbot VD, Allen JJB et al (2000) Memory deficits characterized by patterns of lesions to the hippocampus and parahippocampal cortex. Ann N Y Acad Sci 911:355–368

    Article  CAS  PubMed  Google Scholar 

  • Bondi MW, Houston WS et al (2005) FMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64:501–508

    Article  PubMed  Google Scholar 

  • Braak H, Braak E (1985) On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol 68:325–332

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationlehre der Grosshirnrinde. Barth, Leipzig

    Google Scholar 

  • Brown MW, Aggleton JP (2001) Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat Rev Neurosci 2:51–61

    Article  CAS  PubMed  Google Scholar 

  • Buffalo EA, Bellgowan PSF et al (2006) Distinct roles for medial temporal lobe structures in memory for objects and their locations. Learn Mem 13:638–643

    Article  PubMed  Google Scholar 

  • Burgess N, Maguire EA et al (2001) A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14:439–453

    Article  CAS  PubMed  Google Scholar 

  • Burgess N, Maguire EA et al (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    Article  CAS  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM (2002) The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex. Eur J Neurosci 15:355–364

    Article  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM et al (2002) Perirhinal cortex resolves feature ambiguity in complex visual discriminations. Eur J Neurosci 15(2):365–374

    Article  PubMed  Google Scholar 

  • Bussey TJ, Saksida LM et al (2005) The perceptual-mnemonic/feature conjunction model of perirhinal cortex function. Q J Exp Psychol B 58:269–282

    Article  PubMed  Google Scholar 

  • Canto CB, Wouterlood FG et al (2008) What does anatomical organization of entorhinal cortex tell us? Neural Plast 2008:1–18

    Article  Google Scholar 

  • Carr VA, Rissman J et al (2010) Imaging the human medial temporal lobe with high-resolution fMRI. Neuron 65:298–308

    Article  CAS  PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  PubMed  Google Scholar 

  • Chrobak JJ, Amaral DG (2007) Entorhinal cortex of the monkey: VII. Intrinsic connections. J Comp Neurol 500:612–633

    Article  PubMed  Google Scholar 

  • Colombo M, Fernandez T et al (1998) Functional differentiation along the anterior-posterior axis of the ­hippocampus in monkeys. J Neurophysiol 80:1002–1005

    CAS  PubMed  Google Scholar 

  • Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol 4:249–259

    Article  Google Scholar 

  • Corkin S, Amaral DG et al (1997) H. M’.s medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci 17:3964–3979

    CAS  PubMed  Google Scholar 

  • Coutureau E, Di Scala G (2009) Entorhinal cortex and cognition. Prog Neuropsychopharmacol Biol Psychi­atry 33:753–761

    Article  PubMed  Google Scholar 

  • Crutch SJ, Lehmann M et al (2012) Posterior cortical atrophy. Lancet Neurol 11:170–178

    Article  PubMed  Google Scholar 

  • Cusack R, Russell B et al (2005) An evaluation of the use of passive shimming to improve frontal sensitivity in fMRI. Neuroimage 24:82–91

    Article  PubMed  Google Scholar 

  • Dale AM, Fischl B et al (1999) Cortical surface-based analysis – I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  • Davachi L (2006) Item, context and relational episodic encoding in humans. Curr Opin Neurobiol 16:693–700

    Article  CAS  PubMed  Google Scholar 

  • Davachi L, Wagner AD (2002) Hippocampal contributions to episodic encoding: insights from relational and item-based learning. J Neurophysiol 88:982–990

    PubMed  Google Scholar 

  • De Renzi E (1982) Disorders of space exploration and cognition. Wiley, New York

    Google Scholar 

  • De Renzi E, Faglioni P et al (1977) Topographical amnesia. J Neurol Neurosurg Psychiatry 40:498–505

    Article  PubMed  Google Scholar 

  • Deng W, Aimone JB et al (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    Article  CAS  PubMed  Google Scholar 

  • Di Paola M, Macaluso E et al (2007) Episodic memory impairment in patients with Alzheimer’s disease is correlated with entorhinal cortex atrophy a voxel-based morphometry study. J Neurol 254:774–781

    Article  PubMed  Google Scholar 

  • Diana RA, Yonelinas AP et al (2007) Imaging recollection and familiarity in the medial temporal lobe: a three-component model. Trends Cogn Sci 11:379–386

    Article  PubMed  Google Scholar 

  • Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsy­chologia 46:1624–1635

    Article  PubMed  Google Scholar 

  • Dickerson BC, Salat DH et al (2004) Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 56:27–35

    Article  PubMed  Google Scholar 

  • Dickerson BC, Feczko E et al (2009) Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging 30(3):432–440

    Article  PubMed  Google Scholar 

  • Ding S-L, Van Hoesen GW (2010) Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359–1379

    Article  PubMed  Google Scholar 

  • Ding S-L, Van Hoesen GW et al (2009) Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514:595–623

    Article  PubMed  Google Scholar 

  • Doeller CF, Barry C et al (2010) Evidence for grid cells in a human memory network. Nature 463:657–661

    Article  CAS  PubMed  Google Scholar 

  • Dolorfo CL, Amaral DG (1998) Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 398:25–48

    Article  CAS  PubMed  Google Scholar 

  • Duvernoy HM (1998) The human hippocampus, 2nd edn. Springer, Belin

    Google Scholar 

  • Eichenbaum H, Dudchenko P et al (1999) The hippocampus, memory and place cells: is it spatial memory or a memory space? Neuron 23:209–226

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H, Yonelinas AP et al (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    Article  CAS  PubMed  Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article  CAS  PubMed  Google Scholar 

  • Epstein R, Harris A et al (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125

    Article  CAS  PubMed  Google Scholar 

  • Eustache F, Desgranges B et al (2001) Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport 12:683–685

    Article  CAS  PubMed  Google Scholar 

  • Ewers M, Sperling RA et al (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442

    Article  CAS  PubMed  Google Scholar 

  • Fischl B, Sereno MI et al (1999) Cortical surface-based analysis – II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  • Fyhn M, Molden S et al (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Fyhn M, Hafting T et al (2007) Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446:190–194

    Article  CAS  PubMed  Google Scholar 

  • Gadian DG, Aicardi J et al (2000) Developmental amnesia associated with early hypoxic–ischaemic injury. Brain 123:499–507

    Article  PubMed  Google Scholar 

  • Gale SD, Hopkins RO (2004) Effects of hypoxia on the brain: neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. J Int Neuropsychol Soc 10:60–71

    Article  PubMed  Google Scholar 

  • Ghoshal N, García-Sierra F et al (2002) Tau conformational changes correspond to impairments of episodic memory in mild cognitive impairment and Alzheimer’s disease. Exp Neurol 177:475–493

    Article  CAS  PubMed  Google Scholar 

  • Giovanello KS, Schnyer DM et al (2004) A critical role for the anterior hippocampus in relational memory: evidence from an fMRI study comparing associative and item recognition. Hippocampus 14:5–8

    Article  PubMed  Google Scholar 

  • Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677

    Article  CAS  PubMed  Google Scholar 

  • Guillozet AL, Weintraub S et al (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736

    Article  PubMed  Google Scholar 

  • Hafting T, Fyhn M et al (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  CAS  PubMed  Google Scholar 

  • Hanke J (1997) Sulcal pattern of the anterior parahippocampal gyrus in the human adult. Ann Anat 179:335–339

    Article  CAS  PubMed  Google Scholar 

  • Hannula DE, Ranganath C (2008) Medial temporal lobe activity predicts successful relational memory binding. J Neurosci 28:116–124

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Brandon MP (2008) Linking cellular mechanisms to behavior: entorhinal persistent spiking and membrane potential oscillations may underlie path integration, grid cell firing, and episodic memory. Neural Plast 2008:1–12

    Article  CAS  Google Scholar 

  • Henke K (2010) A model for memory systems based on processing modes rather than consciousness. Nat Rev Neurosci 11:523–532

    Article  CAS  PubMed  Google Scholar 

  • Henke K, Buck A et al (1997) Human hippocampus establishes associations in memory. Hippocampus 7:249–256

    Article  CAS  PubMed  Google Scholar 

  • Henke K, Kroll NEA et al (1999a) Memory lost and regained following bilateral hippocampal damage. J Cogn Neurosci 11:682–697

    Article  CAS  PubMed  Google Scholar 

  • Henke K, Weber B et al (1999b) Human hippocampus associates information in memory. Proc Natl Acad Sci USA 96:5884–5889

    Article  CAS  PubMed  Google Scholar 

  • Henson R (2005) A mini-review of fMRI studies of human medial temporal lobe activity associated with recognition memory. Q J Exp Psychol B 58:340–360

    Article  PubMed  Google Scholar 

  • Hirni D, Monsch AU et al (2011) Relative association of perirhinal and entorhinal cortex integrity with semantic and episodic memory performance: implications for early detection of Alzheimer’s disease. In: 288.0 Neuroscience Meeting Planner. Society for Neuroscience, Washington, D.C.

    Google Scholar 

  • Hogan RE, Mark KE et al (2000) Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients. Radiology 216:291–297

    CAS  PubMed  Google Scholar 

  • Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2:311–333

    CAS  PubMed  Google Scholar 

  • Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 871–914

    Chapter  Google Scholar 

  • Insausti R, Amaral DG et al (1987) The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 264:356–395

    Article  CAS  PubMed  Google Scholar 

  • Insausti R, Juottonen K et al (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar ­cortices. AJNR Am J Neuroradiol 19:659–671

    CAS  PubMed  Google Scholar 

  • Jacobs J, Kahana MJ et al (2010) A sense of direction in human entorhinal cortex. Proc Natl Acad Sci USA 107:6487–6492

    Article  CAS  PubMed  Google Scholar 

  • Juottonen K, Laakso MP et al (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiology of Aging 19(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Jung MW, Wiener SI et al (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–7356

    CAS  PubMed  Google Scholar 

  • Kivisaari SL, Tyler LK et al (2012) Medial perirhinal cortex disambiguates confusable objects. Brain 135:3757–3769

    Google Scholar 

  • Klein A, Ghosh SS et al (2010) Evaluation of volume-based and surface-based brain image registration methods. Neuroimage 51:214–220

    Article  PubMed  Google Scholar 

  • Klingler J (1948) Die makroskopische Anatomie der Ammonsformation. Kommissionsverlag von Gebrüder Fretz A.G., Zürich

    Google Scholar 

  • Köhler S, Crane J et al (2002) Differential contributions of the parahippocampal place area and the anterior hippocampus to human memory for scenes. Hippocampus 12:718–723

    Article  PubMed  Google Scholar 

  • Köhler S, Danckert S et al (2005) Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI. Hippocampus 15:763–774

    Article  PubMed  Google Scholar 

  • Kravitz DJ, Saleem KS et al (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230

    Article  CAS  PubMed  Google Scholar 

  • Krimer LS, Hyde TM et al (1997) The entorhinal cortex: an examination of cyto- and myeloarchitectonic organization in humans. Cereb Cortex 7:722–731

    Article  CAS  PubMed  Google Scholar 

  • Lashley KS (1929) Brain mechanisms and intelligence: a quantitative study of injuries to the brain. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430

    Article  CAS  PubMed  Google Scholar 

  • Lavenex P, Suzuki WA et al (2004) Perirhinal and parahippocampal cortices of the macaque monkey: intrinsic projections and interconnections. J Comp Neurol 472:371–394

    Article  PubMed  Google Scholar 

  • Lee ACH, Barense MD et al (2005) The contribution of the human medial temporal lobe to perception: bridging the gap between animal and human studies. Q J Exp Psychol B 58:300–325

    Article  PubMed  Google Scholar 

  • Lee ACH, Scahill VL et al (2008) Activating the medial temporal lobe during oddity judgment for faces and scenes. Cereb Cortex 18:683–696

    Article  PubMed  Google Scholar 

  • Leonard BW, Amaral DG et al (1995) Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 15:5637–5659

    CAS  PubMed  Google Scholar 

  • Lerch JP, Pruessner JC et al (2005) Focal decline of cortical ­thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001

    Article  PubMed  Google Scholar 

  • Leutgeb JK, Leutgeb S et al (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966

    Article  CAS  PubMed  Google Scholar 

  • Lipton PA, Eichenbaum H (2008) Complementary roles of hippocampus and medial entorhinal cortex in episodic memory. Neural Plast 2008:1–8

    Article  Google Scholar 

  • Liu Z, Murray EA et al (2000) Learning motivational significance of visual cues for reward schedules requires rhinal cortex. Nat Neurosci 3:1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Machulda MM, Ward HA et al (2003) Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 61:500–506

    Article  CAS  PubMed  Google Scholar 

  • Maguire EA, Frith CD et al (1998) Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. J Cogn Neurosci 10:61–76

    Article  CAS  PubMed  Google Scholar 

  • Mahut H, Zola-Morgan S et al (1982) Hippocampal resections impair associative learning and recognition memory in the monkey. J Neurosci 2:1214–1220

    CAS  PubMed  Google Scholar 

  • Maller JJ, Réglade-Meslin C et al (2006) Sex and symmetry differences in hippocampal volumetrics: before and beyond the opening of the crus of the fornix. Hippocampus 16:80–90

    Article  PubMed  Google Scholar 

  • Malykhin NV, Bouchard TP et al (2007) Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Res 155:155–165

    Article  PubMed  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  CAS  PubMed  Google Scholar 

  • Meunier M, Bachevalier J et al (1993) Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13:5418–5432

    CAS  PubMed  Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273:297–298

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M, Ungerleider LG et al (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417

    Article  Google Scholar 

  • Mishkin M, Suzuki WA et al (1997) Hierarchical organization of cognitive memory. Philos Trans R Soc Lond B Boil Sci 352:1461–1467

    Article  CAS  Google Scholar 

  • Montaldi D, Mayes AR (2010) The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20:1291–1314

    Article  PubMed  Google Scholar 

  • Montaldi D, Mayes AR (2011) Familiarity, recollection and medial temporal lobe function: an unresolved issue. Trends Cogn Sci 15:339–340

    Article  PubMed  Google Scholar 

  • Moscovitch M, Rosenbaum RS et al (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207:35–66

    Article  PubMed  Google Scholar 

  • Moser M-B, Moser EI (1998) Functional differentiation in the hippocampus. Hippocampus 8:608–619

    Article  CAS  PubMed  Google Scholar 

  • Moss HE, Rodd JM et al (2005) Anteromedial temporal cortex supports fine-grained differentiation among objects. Cereb Cortex 15:616–627

    Article  CAS  PubMed  Google Scholar 

  • Murray EA, Mishkin M (1998) Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus. J Neurosci 18:6568–6582

    CAS  PubMed  Google Scholar 

  • Murray EA, Richmond BJ (2001) Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol 11:188–193

    Article  CAS  PubMed  Google Scholar 

  • Murray EA, Malkova L et al (1998) Crossmodal associations, intramodal associations, and object identification in macaque monkeys. In: Milner AD (ed) Comparative neuropsychology. Oxford University Press, Oxford, pp 51–69

    Chapter  Google Scholar 

  • O’Donnell P, Buxton PJ et al (2000) The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol 55:273–280

    Article  PubMed  Google Scholar 

  • O’Kane G, Kensinger EA et al (2004) Evidence for semantic learning in profound amnesia: an investigation with patient H.M. Hippocampus 14:417–425

    Article  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • O’Neil EB, Cate AD et al (2009) Perirhinal cortex contributes to accuracy in recognition memory and perceptual discriminations. J Neurosci 29:8329–8334

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682

    Article  PubMed  Google Scholar 

  • Pantel J, O’Leary DS et al (2000) A new method for the in vivo volumetric measurement of the human hippocampus with high neuroanatomical accuracy. Hippocampus 10:752–758

    Article  CAS  PubMed  Google Scholar 

  • Paterson A, Zancwill OL (1945) A case of topographical disorientation associated with a unilateral cerebral lesion. Brain 68:188–212

    Article  CAS  PubMed  Google Scholar 

  • Pihlajamäki M, Tanila H et al (2004) Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur J Neurosci 19:1939–1949

    Article  PubMed  Google Scholar 

  • Pruessner JC, Li LM et al (2000) Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex 10:433–442

    Article  CAS  PubMed  Google Scholar 

  • Pruessner JC, Köhler S et al (2002) Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus. Cereb Cortex 12:1342–1353

    Article  PubMed  Google Scholar 

  • Qiu C, Kivipelto M et al (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11:111–128

    PubMed  Google Scholar 

  • Ranganath C (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20:1263–1290

    Article  PubMed  Google Scholar 

  • Rolls ET (2007) An attractor network in the hippocampus: theory and neurophysiology. Learn Mem 14:714–731

    Article  PubMed  Google Scholar 

  • Rombouts SARB, Barkhof F et al (2000) Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 21:1869–1875

    CAS  PubMed  Google Scholar 

  • Saleem KS, Price JL et al (2007) Cytoarchitectonic and chemoarchitectonic subdivisions of the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 500:973–1006

    Article  CAS  PubMed  Google Scholar 

  • Salmon DP (2011) Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Curr Top Behav Neurosci 179:34–41

    Google Scholar 

  • Salmon DP, Bondi MW (2009) Neuropsychological assessment of dementia. Annu Rev Psychol 60:257–282

    Article  PubMed  Google Scholar 

  • Schmidt CF, Degonda N et al (2005) Sensitivity-encoded (SENSE) echo planar fMRI at 3T in the medial temporal lobe. Neuroimage 25:625–641

    Article  PubMed  Google Scholar 

  • Schwarzbauer C, Mildner T et al (2010) Dual echo EPI – the method of choice for fMRI in the presence of magnetic field inhomogeneities? Neuroimage 49:316–326

    Article  PubMed  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  CAS  PubMed  Google Scholar 

  • Sewards TV (2011) Adolf Hopf’s 1954 myeloarchitectonic parcellation of the human temporal lobe: a review and assessment. Brain Res Bull 86:298–313

    Article  PubMed  Google Scholar 

  • Silbert LC, Quinn JF et al (2003) Changes in premorbid brain volume predict Alzheimer’s disease pathology. Neurology 61:487–492

    Article  CAS  PubMed  Google Scholar 

  • Skotko BG, Rubin DC et al (2008) H.M’.s personal crossword puzzles: understanding memory and language. Memory 16:89–96

    Article  PubMed  Google Scholar 

  • Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Zola SM (1998) Episodic memory, semantic memory and amnesia. Hippocampus 8:205–211

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Zola-Morgan S (1988) Memory: brain systems and behavior. Trends Neurosci 11:170–175

    Article  CAS  PubMed  Google Scholar 

  • Squire LR, Stark CEL et al (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  CAS  PubMed  Google Scholar 

  • Staresina BP, Duncan KD et al (2011) Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. J Neurosci 31:8739–8747

    Article  CAS  PubMed  Google Scholar 

  • Steffenach H-A, Witter M et al (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45(2): 301–313

    Article  CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (1994a) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533

    Article  CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877

    CAS  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (2003a) Perirhinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463:67–91

    Article  PubMed  Google Scholar 

  • Suzuki WA, Amaral DG (2003b) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the ­primate medial temporal lobe. Neuroscience 120:893–906

    Article  CAS  PubMed  Google Scholar 

  • Suzuki WA, Miller EK et al (1997) Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78:1062–1081

    CAS  PubMed  Google Scholar 

  • Takahashi S, Yonezawa H et al (2002) Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett 332:45–48

    Article  CAS  PubMed  Google Scholar 

  • Taylor KI, Monsch AU (2007) The neuropsychology of Alzheimer’s disease. In: Richter RW, Richter BZ (eds) Alzheimer’s disease? The basics. A physician’s guide to the practical management. The Humana Press Inc., Totowa

    Google Scholar 

  • Taylor KI, Probst A (2008) Anatomic localization of the transentorhinal region of the perirhinal cortex. Neurobiol Aging 29:1591–1596

    Article  PubMed  Google Scholar 

  • Taylor KI, Moss HE et al (2006) Binding crossmodal object features in perirhinal cortex. Proc Natl Acad Sci USA 103:8239–8244

    Article  CAS  PubMed  Google Scholar 

  • Taylor KI, Probst A et al (2008) Clinical course of neuropathologically confirmed frontal-variant Alzheimer’s disease. Nat Clin Pract Neurol 4:226–232

    Article  PubMed  Google Scholar 

  • Taylor KI, Stamatakis EA et al (2009) Crossmodal integration of object features: voxel-based correlations in brain-damaged patients. Brain 132:671–683

    Article  PubMed  Google Scholar 

  • Taylor KI, Devereux BJ et al (2011a) Conceptual structure: towards an integrated neuro-cognitive account. Lang Cogn Proc 26:1368–1401

    Article  Google Scholar 

  • Taylor KI, Kivisaari S et al (2011b) Crossmodal integration of audiovisual objects is related to anteromedial temporal lobe integrity in patients with very early Alzheimer’s disease. In: 287.20 Neuroscience Meeting Planner. Society for Neuroscience, Washington, D.C

    Google Scholar 

  • Thangavel R, Van Hoesen GW et al (2008) Posterior parahippocampal gyrus pathology in Alzheimer’s disease. Neuroscience 154:667–676

    Article  CAS  PubMed  Google Scholar 

  • Tyler LK, Stamatakis EA et al (2004) Processing objects at different levels of specificity. Journal of Cognitive Neuroscience 16(3):351–362

    Article  CAS  PubMed  Google Scholar 

  • Tyler LK, Marslen-Wilson W et al (2005) Dissociating neuro-cognitive component processes: voxel-based correlational methodology. Neurop­sychologia 43:771–778

    Article  PubMed  Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus: new observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350

    Article  Google Scholar 

  • Van Hoesen GW (1995) Anatomy of the medial temporal lobe. Magn Reson Imaging 13:1047–1055

    Article  PubMed  Google Scholar 

  • Van Hoesen GW, Augustinak JC et al (2000) The parahippocampal gyrus in Alzheimer’s disease: clinical and preclinical neuroanatomical correlates. Ann N Y Acad Sci 911:254–274

    Article  PubMed  Google Scholar 

  • Vargha-Khadem F, Gadian DG et al (1997) Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277:376–380

    Article  CAS  PubMed  Google Scholar 

  • Victor M, Adams RD et al (1989) The Wernicke-Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition, 2nd edn. F.A. Davis Co, Philadelphia

    Google Scholar 

  • Vogt BA, Vogt L et al (2006) Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage 29:452–466

    Article  PubMed  Google Scholar 

  • von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana

    Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cyto­architecktonik der Grosshirnrinde des erwachsenen Menschen. Springer, Berlin

    Google Scholar 

  • Wallenstein GV, Hasselmo ME et al (1998) The hippocampus as an associator of discontiguous events. Trends Neurosci 21:317–323

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zang Y et al (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31:496–504

    Article  PubMed  Google Scholar 

  • Wang W-C, Lazzara MM et al (2010) The medial temporal lobe supports conceptual implicit memory. Neuron 68:835–842

    Article  CAS  PubMed  Google Scholar 

  • Watson C, Andermann F et al (1992) Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Whiteley AM, Warrington EK (1978) Selective impairment of topographical memory: a single case study. J Neurol Neurosurg Psychiatry 41:575–578

    Article  CAS  PubMed  Google Scholar 

  • Winblad B, Palmer K et al (2004) Mild cognitive impairment - beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256:240–246

    Article  CAS  PubMed  Google Scholar 

  • Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. In: Scharfman HE (ed) The dentate gyrus: a comprehensive guide to structure, function, and clinical implications. Elsevier, Boston, pp 43–61

    Chapter  Google Scholar 

  • Witter MP, Amaral DG (1991) Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307:437–459

    Article  CAS  PubMed  Google Scholar 

  • Witter MP, Moser EI (2006) Spatial representation and the architecture of the entorhinal cortex. Trends Neurosci 29:671–678

    Article  CAS  PubMed  Google Scholar 

  • Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34:515–525

    Article  CAS  PubMed  Google Scholar 

  • Yonelinas AP (2002) The nature of recollection and familiarity: a review of 30 years of research. J Mem Lang 46:441–517

    Article  Google Scholar 

  • Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339

    Article  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR et al (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967

    CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR et al (1989a) Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys. J Neurosci 9:898–913

    CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR et al (1989b) Lesions of the amygdala that spare adjacent cortical regions do not impair memory or exacerbate the impairment following lesions of the hippocampal formation. J Neurosci 9:1922–1936

    CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR et al (1989c) Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9:4355–4370

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Daniela Hirni for comments and helpful discussions. The authors also thank photographer Martin Portmann and the Departments of Neuropathology and Neuroradiology, University Hospital Basel, for providing the post-mortem and MRI brain data, respectively. This research was supported by a Swiss National Science Foundation Ambizione Fellowship (KIT), a grant from the Alzheimer’s Association of Both Basels (KIT), the Finnish Concordia Fund (SLK), the Finnish Cultural Foundation (SLK), and the Swiss Federal Comission for Scholarships for Foreign Students (Berne) (SLK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasa L. Kivisaari Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kivisaari, S.L., Probst, A., Taylor, K.I. (2013). The Perirhinal, Entorhinal, and Parahippocampal Cortices and Hippocampus: An Overview of Functional Anatomy and Protocol for Their Segmentation in MR Images. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34342-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34342-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34341-4

  • Online ISBN: 978-3-642-34342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics