Skip to main content
Book cover

fMRI pp 227–238Cite as

fMRI in Parkinson’s Disease

  • Chapter
  • First Online:
  • 4401 Accesses

Abstract

In this chapter we review recent advances in functional magnetic resonance imaging (fMRI) in Parkinson’s disease (PD). Covariance patterns of regional resting-state activity in functional brain networks can be used to distinguish Parkinson patients from healthy controls and might play an important role as a biomarker in the future. Analyses of motor activity and connectivity have revealed compensatory mechanisms for impaired function of cortico-subcortical feedback loops and have shown how attentional mechanisms modulate the activity in motor loops. Other fMRI studies probing cognitive functions and reward-related behavior have shown that dopamine replacement can have detrimental effects on non-motor brain functions by altering physiological patterns of dopaminergic signaling. Neuroimaging can also be used to assess preclinical compensation of striatal dopaminergic denervation by studying asymptomatic carriers of mutations in genes that can cause PD. In conclusion, fMRI is a powerful tool to monitor changes in functional neural networks and has given important new insights into the pathophysiology of PD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ACC:

Anterior cingulate cortex

BA:

Brodmann area

BG:

Basal ganglia

BOLD:

Blood-oxygenation-level-dependent

CMA:

Cingulate motor area

COMT:

Catechol O-methyltransferase

DCM:

Dynamic causal modeling

DLPFC:

Dorsolateral prefrontal cortex

fMRI:

Functional magnetic resonance imaging

GPe:

External globus pallidus

GPi:

Internal globus pallidus

ICD:

Impulse control disorder

IFG:

Inferior frontal gyrus

IPC:

Inferior parietal cortex

M1:

Primary motor cortex

MFG:

Middle frontal gyrus

MFC:

Middle frontal cortex

OFC:

Orbitofrontal cortex

PD:

Parkinson’s disease

PET:

Positron-emission tomography

PFC:

Prefrontal cortex

PM:

Premotor cortex

PPI:

Psychophysiological interaction

Pre-SMA:

Pre-supplementary motor area

RS-fMRI:

Resting-state functional magnetic resonance imaging

SEM:

Structural equation modeling

SMA:

Supplementary motor area

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

SPECT:

Single-photon emission computed tomography

STN:

Subthalamic nucleus

VTA:

Ventral tegmental area

References

  • Albin RL, Young AB et al (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, Delong MR et al (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Baudrexel S, Witte T et al (2011) Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage 55:1728–1738

    Article  PubMed  Google Scholar 

  • Biswal B, Yetkin FZ et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  • Brown P (2007) Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol 17:656–664

    Article  CAS  PubMed  Google Scholar 

  • Buchel C, Friston KJ (1997) Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb Cortex 7:768–778

    Article  CAS  PubMed  Google Scholar 

  • Buhmann C, Glauche V et al (2003) Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126:451–461

    Article  CAS  PubMed  Google Scholar 

  • Buhmann C, Binkofski F et al (2005) Motor reorganization in asymptomatic carriers of a single mutant Parkin allele: a human model for presymptomatic parkinsonism. Brain 128:2281–2290

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B et al (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219

    Article  CAS  PubMed  Google Scholar 

  • Cools R, D’esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125

    Article  CAS  PubMed  Google Scholar 

  • Delong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  • Di Martino A, Scheres A et al (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747

    Article  PubMed  Google Scholar 

  • Foltynie T, Brayne CE et al (2004) The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127:550–560

    Article  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Buechel C et al (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6:218–229

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ, Harrison L et al (2003) Dynamic causal modelling. Neuroimage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Gasser T (2007) Update on the genetics of Parkinson’s disease. Mov Disord 22(Suppl 17):S343–S350

    Article  PubMed  Google Scholar 

  • Gradinaru V, Mogri M et al (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354–359

    Article  CAS  PubMed  Google Scholar 

  • Haslinger B, Erhard P et al (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124:558–570

    Article  CAS  PubMed  Google Scholar 

  • Helmich RC, Aarts E et al (2009) Increased dependence of action selection on recent motor history in Parkinson’s disease. J Neurosci 29:6105–6113

    Article  CAS  PubMed  Google Scholar 

  • Helmich RC, Derikx LC et al (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20:1175–1186

    Article  PubMed  Google Scholar 

  • Hilker R, Klein C et al (2001) Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 49:367–376

    Article  CAS  PubMed  Google Scholar 

  • Jahanshahi M, Jenkins IH et al (1995) Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 118(Pt 4):913–933

    Article  PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  • Khan NL, Scherfler C et al (2005) Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation. Neurology 64:134–136

    Article  CAS  PubMed  Google Scholar 

  • Lalo E, Thobois S et al (2008) Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J Neurosci 28:3008–3016

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998a) Parkinson’s disease. Second of two parts. N Engl J Med 339:1130–1143

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998b) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Lewis SJ, Dove A et al (2003) Cognitive impairments in early Parkinson’s ­disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23:6351–6356

    CAS  PubMed  Google Scholar 

  • MacDonald PA, MacDonald AA et al (2011) The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: support from functional MRI. Brain 134:1447–1463

    Article  PubMed  Google Scholar 

  • Marklund P, Larsson A et al (2009) Temporal dynamics of basal ganglia under-recruitment in Parkinson’s disease: transient caudate abnormalities during updating of working memory. Brain 132:336–346

    Article  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H et al (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300

    CAS  PubMed  Google Scholar 

  • Owen AM, James M et al (1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115(Pt 6):1727–1751

    Article  PubMed  Google Scholar 

  • Palmer SJ, Eigenraam L et al (2009) Levodopa-sensitive, dynamic changes in effective connectivity during simultaneous movements in Parkinson’s disease. Neuroscience 158:693–704

    Article  CAS  PubMed  Google Scholar 

  • Playford ED, Jenkins IH et al (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32:151–161

    Article  CAS  PubMed  Google Scholar 

  • Redgrave P, Gurney K et al (2008) What is reinforced by phasic dopamine signals? Brain Res Rev 58:322–339

    Article  CAS  PubMed  Google Scholar 

  • Rinne OJ, Nurmi E et al (2001) [(18)F]FDOPA and [(18)F]CFT are both sensitive PET markers to detect presynaptic dopaminergic hypofunction in early Parkinson’s disease. Synapse 40:193–200

    Article  CAS  PubMed  Google Scholar 

  • Rowe JB (2010) Connectivity analysis is essential to understand neurological disorders. Front Syst Neurosci 4:144

    Article  PubMed  Google Scholar 

  • Rowe J, Stephan KE et al (2002) Attention to action in Parkinson’s disease: impaired effective connectivity among frontal cortical regions. Brain 125:276–289

    Article  PubMed  Google Scholar 

  • Rowe JB, Hughes L et al (2008) Parkinson’s disease and dopaminergic therapy–differential effects on movement, reward and cognition. Brain 131:2094–2105

    Article  CAS  PubMed  Google Scholar 

  • Rowe JB, Hughes LE et al (2010) Dynamic causal modelling of effective connectivity from fMRI: are results reproducible and sensitive to Parkinson’s disease and its treatment? Neuroimage 52:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Behrens TE (2008) Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 11:389–397

    Article  CAS  PubMed  Google Scholar 

  • Sabatini U, Boulanouar K et al (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123(Pt 2):394–403

    Article  PubMed  Google Scholar 

  • Savica R, Rocca WA et al (2010) When does Parkinson disease start? Arch Neurol 67:798–801

    Article  PubMed  Google Scholar 

  • Skidmore FM, Yang M et al (2011a) Apathy, depression, and motor symptoms have distinct and separable resting activity patterns in idiopathic Parkinson disease. Neuroimage (in press)

    Google Scholar 

  • Skidmore FM, Yang M et al (2011b) Reliability analysis of the resting state can sensitively and specifically identify the presence of Parkinson disease. Neuroimage (in press)

    Google Scholar 

  • Van Nuenen BF, Weiss MM et al (2009) Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype. Neurology 72:1041–1047

    Article  PubMed  Google Scholar 

  • Voon V, Pessiglione M et al (2010) Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors. Neuron 65:135–142

    Article  CAS  PubMed  Google Scholar 

  • Voon V, Gao J et al (2011) Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain 134:1438–1446

    Article  PubMed  Google Scholar 

  • Weintraub D, Siderowf AD et al (2006) Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol 63:969–973

    Article  PubMed  Google Scholar 

  • Williams-Gray CH, Foltynie T et al (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130:1787–1798

    Article  CAS  PubMed  Google Scholar 

  • Williams-Gray CH, Hampshire A et al (2008) Attentional control in Parkinson’s disease is dependent on COMT val 158 met genotype. Brain 131:397–408

    Article  PubMed  Google Scholar 

  • Wu T, Wang L et al (2010) Neural correlates of bimanual anti-phase and in-phase movements in Parkinson’s disease. Brain 133:2394–2409

    Article  PubMed  Google Scholar 

  • Wu T, Wang L et al (2011) Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. Neuroimage 55:204–215

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartwig R. Siebner M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siebner, H.R., Herz, D.M. (2013). fMRI in Parkinson’s Disease. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34342-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34342-1_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34341-4

  • Online ISBN: 978-3-642-34342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics