Skip to main content

Functional Magnetic Resonance-Guided Brain Tumor Resection

  • Chapter
  • First Online:
fMRI

Abstract

Functional magnetic resonance imaging (fMRI) allows for the delineation of cortical areas involved in critical neurologic function such as language, motor movement, memory, and other cognitive functions. When used in concert with frameless neuronavigation or intraoperative MRI (ioMRI), this information can provide the clinician with near real-time feedback, enabling the neurosurgeon to distinguish between areas of neoplasia and non-eloquent or eloquent brain tissue.

We review our experience of combining preoperative fMRI data obtained at both 1.5 and 3 Tesla (T) with ioMRI-guided tumor resection at 1.5 T. We briefiy describe the MRI operating suite, those protocols used for ioMRI-guided surgery, and we also review the experience of others performing fMRI to aid in neurosurgery utilizing neuronavigation.

In our two series, patients underwent preoperative fMRI to identify areas in the brain for motor or language activation or both. Tumors that were deemed resectable underwent an attempted gross total resection with ioMRI guidance at 1.5 T. There were no permanent neurologic deficits seen in any patient in these series.

fMRI is a useful tool for neuronavigation in tumor surgery that allows for an aggressive pursuit of gross total resection, even for tumors adjacent to eloquent cortex. fMRI has been used successfully in concert with frameless neuronavigation, ioMRI, and direct surgical methods such as awake craniotomy and intraoperative cortical stimulation. We have found that the combination of preoperative fMRI with ioMRI-guided brain tumor resection at 1.5 T has yielded excellent clinical results.

Introduction: Functional magnetic resonance imaging (fMRI) allows for the delineation of cortical areas involved in critical neurologic function such as language, motor movement, memory, and other cognitive functions. When used in concert with frameless neuronavigation or intraoperative MRI (ioMRI), this information can provide the clinician with near real-time feedback, enabling the neurosurgeon to distinguish between areas of neoplasia and non-eloquent or eloquent brain tissue.

Methods: We review our experience of combining preoperative fMRI data obtained at both 1.5 and 3 Tesla (T) with ioMRI-guided tumor resection at 1.5 T. We briefly describe the MRI operating suite, those protocols used for ioMRI-guided surgery, and we also review the experience of others performing fMRI to aid in neurosurgery utilizing neuronavigation.

Results: In our two series, patients underwent preoperative fMRI to identify areas in the brain for motor or language activation or both. Tumors that were deemed resectable underwent an attempted gross total resection with ioMRI guidance at 1.5 T. There were no permanent neurologic deficits seen in any patient in these series.

Conclusions: fMRI is a useful tool for neuronavigation in tumor surgery that allows for an aggressive pursuit of gross total resection, even for tumors adjacent to eloquent cortex. fMRI has been used successfully in concert with frameless neuronavigation, ioMRI, and direct surgical methods such as awake craniotomy and intraoperative cortical stimulation. We have found that the combination of preoperative fMRI with ioMRI-guided brain tumor resection at 1.5 T has yielded excellent clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander E 3rd, Moriarty TM et al (1997) The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact Funct Neurosurg 68(1–4 Pt 1):10–17

    Article  PubMed  Google Scholar 

  • Amiez C, Kostopoulos P et al (2008) Preoperative functional magnetic resonance imaging assessment of higher-order cognitive function in patients undergoing surgery for brain tumors. J Neurosurg 108(2):258–268

    Article  PubMed  Google Scholar 

  • Bello L, Castellano A et al (2011) Intraoperative use of diffusion tensor imaging fiber tractography and subcortical mapping for resection of gliomas: technical considerations. Neurosurg Focus 28(2):E6

    Article  Google Scholar 

  • Berger MS, Deliganis AV et al (1994) The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer 74(6):1784–1791

    Article  CAS  PubMed  Google Scholar 

  • Bernays RL, Laws ER Jr (1997) Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery. Neurosurgery 41(4):999

    Article  CAS  PubMed  Google Scholar 

  • Bernstein M, Al-Anazi AR et al (2000) Brain tumor surgery with the Toronto open magnetic resonance imaging system: preliminary results for 36 patients and analysis of advantages, disadvantages, and future prospects. Neurosurgery 46(4):900–907

    CAS  PubMed  Google Scholar 

  • Black PM, Alexander E 3rd et al (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45(3):423–431

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Dempf S et al (2000) Functional cranial neuronavigation. Direct integration of fMRI and PET data. J Neuroradiol 27(3):157–163

    CAS  PubMed  Google Scholar 

  • Braun V, Dempf S et al (2001) Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery 48(5):1178–1181

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Albrecht A et al (2006) Brain tumour surgery in the vicinity of short-term memory representation-–results of neuronavigation using fMRI images. Acta Neurochir (Wien) 148(7):733–739

    Article  CAS  Google Scholar 

  • Buckner JC (2003) Factors influencing survival in high-grade gliomas. Semin Oncol 30(6 Suppl 19):10–14

    Article  PubMed  Google Scholar 

  • Chang EF, Potts MB et al (2008) Seizure characteristics and control following resection in 332 patients with low-grade gliomas. J Neurosurg 108(2):227–235

    Article  PubMed  Google Scholar 

  • Clatz O, Delingette H et al (2005) Robust ­nonrigid registration to capture brain shift from intraoperative MRI. IEEE Trans Med Imaging 24(11):1417–1427

    Article  PubMed  Google Scholar 

  • Claus EB, Horlacher A et al (2005) Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 103(6):1227–1233

    Article  PubMed  Google Scholar 

  • Engle DJ, Lunsford LD (1987) Brain tumor resection guided by intraoperative computed tomography. J Neurooncol 4(4):361–370

    Article  CAS  PubMed  Google Scholar 

  • Fandino J, Kollias SS et al (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91(2):238–250

    Article  CAS  PubMed  Google Scholar 

  • Feigl GC, Safavi-Abassi S et al (2008) Real time 3T fMRI data of brain tumour patients for intra-operative localization of primary motor areas. Eur J Surg Oncol 34(6):708–715

    Article  CAS  PubMed  Google Scholar 

  • Friedman L, Kenny JT et al (1998) Brain activation during silent word generation evaluated with functional MRI. Brain Lang 64(2):231–256

    Article  CAS  PubMed  Google Scholar 

  • Golby AJ, Kindlmann G et al (2011) Interactive diffusion tensor tractography visualization for neurosurgical planning. Neurosurgery 68(2):496–505

    Article  PubMed  Google Scholar 

  • Gumprecht H, Ebel GK et al (2002) Neuronavigation and functional MRI for surgery in patients with lesion in eloquent brain areas. Minim Invasive Neurosurg 45(3):151–153

    Article  CAS  PubMed  Google Scholar 

  • Hall WA, Martin AJ et al (1998) High-field strength interventional magnetic resonance imaging for pediatric neurosurgery. Pediatr Neurosurg 29(5):253–259

    Article  CAS  PubMed  Google Scholar 

  • Hall WA, Liu H et al (2003) Influence of 1.5-Tesla intraoperative MR imaging on surgical decision making. Acta Neurochir Suppl 85:29–37

    Article  CAS  PubMed  Google Scholar 

  • Hall WA, Liu H et al (2005) Functional magnetic resonance imaging-guided resection of low-grade gliomas. Surg Neurol 64(1):20–27

    Article  PubMed  Google Scholar 

  • Hinke RM, Hu X et al (1993) Functional magnetic resonance imaging of Broca’s area during internal speech. Neuroreport 4(6):675–678

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Carr TH et al (2002) Comparing cortical activations for silent and overt speech using event-related fMRI. Hum Brain Mapp 15(1):39–53

    Article  PubMed  Google Scholar 

  • Jääskeläinen J, Randell T (2003) Awake craniotomy in glioma surgery. Acta Neurochir Suppl 88:31–35

    PubMed  Google Scholar 

  • Jeremic B, Grujicic D et al (1994) Influence of extent of surgery and tumor location on treatment outcome of patients with glioblastoma multiforme treated with combined modality approach. J Neurooncol 21(2):177–185

    Article  CAS  PubMed  Google Scholar 

  • Joki T, Caroll R et al (2001) Assessment of alterations in gene expression in recurrent malignant glioma after radiotherapy using complementary deoxyribonucleic acid microarrays. Neurosurgery 48(1):195–202

    CAS  PubMed  Google Scholar 

  • Kamada K, Houkin K et al (2003) Visualization of the eloquent motor system by integration of MEG, functional, and anisotropic diffusion-weighted MRI in functional neuronavigation. Surg Neurol 59(5):352–361

    Article  Google Scholar 

  • Kamada K, Todo T et al (2007) Visualization of the frontotemporal language fibers by tractography combined with functional magnetic resonance imaging and magnetoencephalography. J Neurosurg 106(1):90–98

    Article  PubMed  Google Scholar 

  • Keles GE, Lamborn KR et al (2001) Low-grade hemispheric gliomas in adults: a critical review of extent of resection as a factor influencing outcome. J Neurosurg 95(5):735–745

    Article  CAS  PubMed  Google Scholar 

  • Keskil S, Bademci G et al (2006) Tracing the dural tail with image-guided surgery. Minim Invasive Neurosurg 49(6):357–358

    Article  CAS  PubMed  Google Scholar 

  • Kober H, Nimsky C et al (2002) Co-registration of function and anatomy in frameless stereotaxy by contour fitting. Stereotact Funct Neurosurg 79(3–4):272–283

    Article  PubMed  Google Scholar 

  • Kowalczuk A, Macdonald RL et al (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41(5):1028–1036

    Article  CAS  Google Scholar 

  • Kremer P, Tronnier V et al (2006) Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children. Childs Nerv Syst 22(7):674–678

    Article  PubMed  Google Scholar 

  • Krishnan R, Raabe A et al (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55(4):904–914

    Article  PubMed  Google Scholar 

  • Kucharczyk J, Hall WA et al (2001) Cost-efficacy of MR-guided neurointerventions. Neuroimaging Clin N Am 11(4):767–772

    CAS  PubMed  Google Scholar 

  • Lacroix M, Abi-Said D et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  CAS  PubMed  Google Scholar 

  • Lai DM, Lin SM et al (1993) Therapy for supratentorial malignant astrocytomas: survival and possible prognostic factors. J Formos Med Assoc 92(3):220–226

    CAS  PubMed  Google Scholar 

  • Lam CH, Hall WA et al (2001) Intra-operative MRI-guided approaches to the pediatric posterior fossa tumors. Pediatr Neurosurg 34(6):295–300

    Article  CAS  PubMed  Google Scholar 

  • Laws ER Jr, Taylor WF et al (1984) Neurosurgical management of low-grade astrocytoma of the cerebral hemispheres. J Neurosurg 61(4):665–673

    Article  PubMed  Google Scholar 

  • Martin C, Alexander E 3rd et al (1998) Surgical treatment of low-grade gliomas in the intraoperative magnetic resonance imager. Neurosurg Focus 4(4):e8

    Article  CAS  PubMed  Google Scholar 

  • Medbery CA 3rd, Straus KL et al (1988) Low-grade astrocytomas: treatment results and prognostic variables. Int J Radiat Oncol Biol Phys 15(4):837–841

    Article  PubMed  Google Scholar 

  • Meyer FB, Bates LM et al (2001) Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo Clin Proc 76(7):677–687

    Article  CAS  PubMed  Google Scholar 

  • Nabavi A, Black PM et al (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4):787–797

    CAS  PubMed  Google Scholar 

  • Nicolato A, Gerosa MA et al (1995) Prognostic factors in low-grade supratentorial astrocytomas: a uni-multivariate statistical analysis in 76 surgically treated adult patients. Surg Neurol 44(3):208–221

    Article  CAS  PubMed  Google Scholar 

  • Nimsky C, Ganslandt O et al (2004) Intraoperative high-field-strength MR imaging: implementation and experience in 200 patients. Radiology 233(1):67–78

    Article  PubMed  Google Scholar 

  • Nimsky C, Ganslandt O et al (2006a) Intraoperative high field MRI: anatomical and functional imaging. Acta Neurochir 98(Suppl):87–95

    Article  CAS  Google Scholar 

  • Nimsky C, Ganslandt O et al (2006b) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res 28(5):482–487

    Article  PubMed  Google Scholar 

  • O’Shea JP, Whalen S et al (2006) Integrated image–and function-guided surgery in eloquent cortex: a technique report. Int J Med Robot 2(1):75–83

    Article  PubMed  Google Scholar 

  • Ogawa S, Lee TM et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  Google Scholar 

  • Patchell RA, Tibbs PA et al (1990) A randomized trial of surgery in the ­treatment of single metastases to the brain. N Engl J Med 322(8):494–500

    Article  CAS  PubMed  Google Scholar 

  • Philippon JH, Clemenceau SH et al (1993) Supratentorial low-grade astrocytomas in adults. Neurosurgery 32(4):554–559

    Article  CAS  PubMed  Google Scholar 

  • Picht T, Kombos T et al (2006) Multimodal protocol for awake craniotomy in language cortex tumour surgery. Acta Neurochir (Wien) 148(2):127–137

    Article  CAS  Google Scholar 

  • Piepmeier JM (1987) Observations on the current treatment of low-grade astrocytic tumors of the cerebral hemispheres. J Neurosurg 67(2):177–181

    Article  CAS  PubMed  Google Scholar 

  • Piepmeier J, Christopher S et al (1996) Variations in the natural history and survival of patients with supratentorial low-grade astrocytomas. Neurosurgery38(5):872–878

    Article  CAS  PubMed  Google Scholar 

  • Prabhu SS, Gasco J et al (2011) Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article. J Neurosurg 114(3):719–726

    Article  PubMed  Google Scholar 

  • Preul C, Tittgemeyer M et al (2004) Quantitative assessment of parenchymal and ventricular readjustment to intracranial pressure relief. AJNR Am J Neuroradiol 25(3):377–381

    PubMed  Google Scholar 

  • Rasmussen IA Jr, Lindseth F et al (2007) Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 149(4):365–378

    Article  Google Scholar 

  • Reinertsen I, Lindseth F et al (2007) Clinical validation of vessel-based registration for ­correction of brain-shift. Med Image Anal 11(6):673–684

    Article  CAS  PubMed  Google Scholar 

  • Reinges MH, Nguyen HH et al (2004) Course of brain shift during microsurgical resection of supratentorial cerebral lesions: limits of conventional neuronavigation. Acta Neurochir (Wien) 146(4):369–377

    Article  CAS  Google Scholar 

  • Roessler K, Donat M et al (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76(8):1152–1157

    Article  CAS  PubMed  Google Scholar 

  • Roux FE, Ibarrola D et al (2001) Methodological and technical issues for integrating functional magnetic resonance imaging data in a neuronavigational system. Neurosurgery 49(5):1145–1156

    CAS  PubMed  Google Scholar 

  • Roux FE, Boulanouar K et al (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52(6):1335–1345

    Article  PubMed  Google Scholar 

  • Schulder M, Maldjian JA et al (1997) Functional MRI-guided surgery of intracranial tumors. Stereotact Funct Neurosurg 68(1–4 Pt 1):98–105

    Article  CAS  PubMed  Google Scholar 

  • Schulder M, Holodny A et al (1999) Functional magnetic resonance image-guided surgery of tumors in or near the primary visual cortex. Stereotact Funct Neurosurg 73(1–4):31–36

    Article  CAS  PubMed  Google Scholar 

  • Schwartz RB, Hsu L et al (1999) Intraoperative MR imaging guidance for intracranial neurosurgery: experience with the first 200 cases. Radiology 211(2):477–488

    CAS  PubMed  Google Scholar 

  • Signorelli F, Guyotat J et al (2003) Technical refinements for validating functional MRI-based neuronavigation data by electrical stimulation during cortical language mapping. Minim Invasive Neurosurg 46(5):265–268

    Article  CAS  PubMed  Google Scholar 

  • Simpson DJ (1957) The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry 20(1):22–39

    Article  CAS  PubMed  Google Scholar 

  • Speigl-Kreinecker S, Pirker C et al (2002) Dynamics of chemosensitivity and chromosomal instability in recurrent glioblastoma. Br J Cancer 96:960–969

    Article  Google Scholar 

  • Stummer W, Reulen HJ et al (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62(3):564–576

    Article  PubMed  Google Scholar 

  • Trantakis C, Tittgemeyer M et al (2003) Investigation of time-dependency of intracranial brain shift and its relation to the extent of tumor removal using intra-operative MRI. Neurol Res 25(1):9–12

    Article  PubMed  Google Scholar 

  • Truwit CL, Hall WA (2006) Intraoperative magnetic ­resonance imaging-guided neurosurgery at 3-T. Neurosurgery58(4 Suppl 2):ONS-338–ONS-345

    Google Scholar 

  • Ushio Y, Kochi M et al (2005) Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurol Med Chir (Tokyo) 45(9):454–460

    Article  Google Scholar 

  • Vecht CJ, Haaxma-Reiche H et al (1993) Treatment of single brain metastasis: radiotherapy alone or ­combined with neurosurgery? Ann Neurol 33(6):583–590

    Article  CAS  PubMed  Google Scholar 

  • Vidiri A, Carapella CM et al (2006) Early post-operative MRI: correlation with progression-free survival and overall survival time in malignant gliomas. J Exp Clin Cancer Res 25(2):177–182

    CAS  PubMed  Google Scholar 

  • Weber F, Riedel A et al (1996) The role of adjuvant radiation and multiple resection within the surgical management of brain metastases. Neurosurg Rev 19(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson ID, Romanowski CA et al (2003) Motor functional MRI for pre-operative and intraoperative neurosurgical guidance. Br J Radiol 76(902):98–103

    Article  CAS  PubMed  Google Scholar 

  • Wu JS, Zhou LF et al (2007) Clinical evaluation and follow up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 61(5):935–948

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Hall M.D., MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, P.D., Truwit, C.L., Hall, W.A. (2013). Functional Magnetic Resonance-Guided Brain Tumor Resection. In: Ulmer, S., Jansen, O. (eds) fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34342-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34342-1_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34341-4

  • Online ISBN: 978-3-642-34342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics