Skip to main content

Abstract

The determination of areas exposed to be interested by new eruptive events in volcanic regions is crucial for diminishing consequences in terms of human causalities and damages of material properties. In this paper, we illustrate a methodology for defining flexible high-detailed lava invasion hazard maps. Specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures. Practical applications referred to some inhabited areas of Mt Etna (South Italy), Europe’s most active volcano, show the methodology’s appropriateness in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behncke, B., Neri, M.: Cycles and Trends in the recent eruptive behaviour of Mount Etna (Italy). Can. J. Earth Sci. 40, 1405–1411 (2003)

    Article  Google Scholar 

  2. Dibben, C.J.L.: Leaving the city for the suburbs - The dominance of ’ordinary’ decision making over volcanic risk perception in the production of volcanic risk on Mt Etna, Sicily. J. Volcanol. Geotherm. Res. 172, 288–299 (2008)

    Article  Google Scholar 

  3. Barberi, F., Carapezza, M.L., Valenza, M., Villari, L.: The control of lava flow during the 1991-1992 eruption of Mt. Etna. J. Volcanol. Geotherm. Res. 56, 1–34 (1993)

    Article  Google Scholar 

  4. Barberi, F., Brondi, F., Carapezza, M.L., Cavarra, L., Murgia, C.: Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. J. Volcanol. Geotherm. Res. 123, 231–243 (2003)

    Article  Google Scholar 

  5. Ishihara, K., Iguchi, M., Kamo, K.: Lava flows and domes: emplacement mechanisms and hazard implications. In: IAVCEI Proceedings, pp. 174–207. Springer, Heidelberg (1990)

    Google Scholar 

  6. Del Negro, C., Fortuna, L., Herault, A., Vicari, A.: Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bull. Volcanol. 70, 805–812 (2008)

    Article  Google Scholar 

  7. Avolio, M.V., Crisci, G.M., Di Gregorio, S., Rongo, R., Spataro, W., D’Ambrosio, D.: Pyroclastic Flows Modelling using Cellular Automata. Comp. Geosc. 32, 897–911 (2006)

    Article  Google Scholar 

  8. Felpeto, A., Arana, V., Ortiz, R., Astiz, M., Garcia, A.: Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Nat. Hazards 23, 247–257 (2001)

    Article  Google Scholar 

  9. Favalli, M., Tarquini, S., Fornaciai, A., Boschi, E.: A new approach to risk assessment of lava flow at Mount Etna. Geology 37, 1111–1114 (2009)

    Article  Google Scholar 

  10. Crisci, G., Rongo, R., Di Gregorio, S., Spataro, W.: The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. J. Volcanol. Geotherm. Res. 132, 253–267 (2004)

    Article  Google Scholar 

  11. Dragoni, M., Bonafede, M., Boschi, E.: Downslope flow models of a Bingham liquid: Implications for lava flows. J. Volc. Geoth. Res. 30(3-4), 305–325 (1986)

    Article  Google Scholar 

  12. Crisp, J.A., Baloga, S.M.: A model for lava flows with two thermal components. J. Geophys. Res. 95, 1255–1270 (1990)

    Article  Google Scholar 

  13. Longo, A., Macedonio, G.: Lava flow in a channel with a bifurcation. Phys. Chem. Earth Part A - Solid Earth and Geodesy 24(11-12), 953–956 (1999)

    Article  Google Scholar 

  14. Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fund. Inform. 8, 247–268 (2008)

    Google Scholar 

  15. Vicari, A., Herault, A., DelNegro, C., Coltelli, M., Marsella, M., Proietti, C.: Modelling of the 2001 Lava Flow at Etna Volcano by a Cellular Automata Approach. Environ. Model. Soft. 22, 1465–1471 (2007)

    Article  Google Scholar 

  16. D’Ambrosio, D., Rongo, R., Spataro, W., Avolio, M.V., Lupiano, V.: Lava Invasion Susceptibility Hazard Mapping Through Cellular Automata. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 452–461. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Crisci, G.M., Avolio, M.V., Behncke, B., D’Ambrosio, D., Di Gregorio, S., Lupiano, V., Neri, M., Rongo, R., Spataro, W.: Predicting the impact of lava flows at Mount Etna. J. Geophy. Res. 115(B0420), 1–14 (2010)

    Google Scholar 

  18. Crisci, G.M., Di Gregorio, S., Ranieri, G.: A cellular space model of basaltic lava flow. In: Proceedings Int. Conf. Applied Modelling and Simulation 1982, Paris-France, vol. 11, pp. 65–67 (1982)

    Google Scholar 

  19. Von Neumann, J.: Theory of self reproducing automata. Univ. Illinois Press, Urbana (1966)

    Google Scholar 

  20. Weimar, J.R.: Three-dimensional Cellular Automata for Reaction-Diffusion Systems. Fundam. Inform. 52(1-3), 277–284 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Univ. Press (2004)

    Google Scholar 

  22. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press (1998)

    Google Scholar 

  23. McNamara, G.R., Zanetti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

    Article  Google Scholar 

  24. McBirney, A.R., Murase, T.: Rheological properties of magmas. Ann. Rev. Ear. Planet. Sc. 12, 337–357 (1984)

    Article  Google Scholar 

  25. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Fut. Gener. Comp. Syst. 16, 259–271 (1999)

    Article  Google Scholar 

  26. D’Ambrosio, D., Spataro, W.: Parallel evolutionary modelling of geological processes. Paral. Comp. 33(3), 186–212 (2007)

    Article  MathSciNet  Google Scholar 

  27. Oliverio, M., Spataro, W., D’Ambrosio, D., Rongo, R., Spingola, G., Trunfio, G.A.: OpenMP parallelization of the SCIARA Cellular Automata lava flow model: performance analysis on shared-memory computers. In: Proccedings of the International Conference on Computational Science, ICCS 2011, vol. 4, pp. 271–280 (2011)

    Google Scholar 

  28. Spataro, W., Avolio, M.V., Lupiano, V., Trunfio, G.A., Rocco, R., D’Ambrosio, D.: The latest release of the lava flows simulation model SCIARA: First application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface. In: Proccedings of the International Conference on Computational Science, ICCS 2010, vol. 1(1), pp. 17–26 (2010)

    Google Scholar 

  29. Park, S., Iversen, J.D.: Dynamics of lava flow: Thickness growth characteristics of steady 2-dimensional flow. Geophys. Res. Lett. 11, 641–644 (1984)

    Article  Google Scholar 

  30. Avolio, M.V., Di Gregorio, S., Rongo, R., Sorriso-Valvo, M., Spataro, W.: Hexagonal cellular automata model for debris flow simulation. In: Proceedings of IAMG, pp. 183–188 (1998)

    Google Scholar 

  31. D’Ambrosio, D., Di Gregorio, S., Iovine, G.: Simulating debris flows through a hexagonal Cellular Automata model: Sciddica S3-hex. Nat. Haz. Ear. Sys. Scien. 3, 545–559 (2003)

    Article  Google Scholar 

  32. Miyamoto, H., Sasaki, S.: Simulating lava flows by an improved cellular automata method. Comp. Geosci. 23, 283–292 (1997)

    Article  Google Scholar 

  33. Crisci, G.M., Di Gregorio, S., Nicoletta, F., Rongo, R., Spataro, W.: Analysing Lava Risk for the Etnean Area: Simulation by Cellular Automata Methods. Nat. Haz. 20, 215–229 (1999)

    Article  Google Scholar 

  34. Avolio, M.V., D’Ambrosio, D., Lupiano, V., Rongo, R., Spataro, W.: Evaluating Lava Flow Hazard at Mount Etna (Italy) by a Cellular Automata Based Methodology. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part II. LNCS, vol. 6068, pp. 495–504. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  35. Cappello, A., Vicari, A., DelNegro, C.: A retrospective validation of lava flow hazard map at Etna Volcano. Spec. Issue of Annals of Geophy. (2011) (to appear)

    Google Scholar 

  36. Ho, C.H., Smith, E.I., Feuerbach, D.L., Naumann, T.R.: Eruptive calculation for the Yucca Mountain site, USA: Statistical estimation of recurrence rates. Bull. Volcanol. 54, 50–56 (1991)

    Article  Google Scholar 

  37. Behncke, B., Neri, M., Nagay, A.: Lava flow hazard at Mount Etna (Italy): New data from a GIS-based study. Spec. Pap. Geol. Soc. Am. 396, 187–205 (2005)

    Google Scholar 

  38. Tarquini, S., Favalli, M.: Changes of the susceptibility to lava flow invasion induced by morphological modifications of an active volcano: the case of Mount Etna, Italy. Nat. Hazards 54, 537–546 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Spataro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spataro, W., Rongo, R., Lupiano, V., Avolio, M.V., D’Ambrosio, D., Trunfio, G.A. (2013). High Detailed Lava Flows Hazard Maps by a Cellular Automata Approach. In: Pina, N., Kacprzyk, J., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34336-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34336-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34335-3

  • Online ISBN: 978-3-642-34336-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics