Skip to main content

Evaluating the Effectiveness of Mixed Reality Simulations for Developing UAV Systems

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2012)

Abstract

The development cycle of an Unmanned Aerial Vehicle (UAV) system can be long and challenging. Mixed Reality (MR) simulations can reduce cost, duration and risk of the development process by enabling the replacement of expensive, dangerous, or not yet fully developed components with virtual counterparts. However, there has been little validation of such hybrid simulation methods in practical robot applications. This paper evaluates the use of MR simulations for prototyping a UAV system to be deployed for a dairy farming monitoring task. We show that by augmenting the robot’s sensing with a virtual moving cow using an extensible Augmented Reality (AR) tracking technique, MR simulations could help to provide efficient testing and identify improvements to the UAV controller. User study findings reveal the importance of both virtual and MR simulations to robot development, with MR simulations helping developers transition to development in a more physical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ascending Technologies, http://www.asctec.de/

  2. Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 21–28 (2010)

    Google Scholar 

  3. Chen, I.Y.H., MacDonald, B., Wünsche, B.: Markerless augmented reality for robots in unprepared environments. In: Proceedings of the Australasian Conference on Robotics and Automation, Canberra, Australia, December 3-5 (2008)

    Google Scholar 

  4. Chen, I.Y.H., MacDonald, B., Wünsche, B.: Mixed reality simulation for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, May 12-17, pp. 232–237 (2009)

    Google Scholar 

  5. Chen, I.Y.H., MacDonald, B., Wünsche, B., Biggs, G., Kotoku, T.: Analysing Mixed Reality Simulation for Industrial Applications: A Case Study in the Development of a Robotic Screw Remover System. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 350–361. Springer, Heidelberg

    Chapter  Google Scholar 

  6. Collett, T., MacDonald, B.: An augmented reality debugging system for mobile robot software engineers. Journal of Software Engineering for Robotics 1(1), 18–32 (2009)

    Google Scholar 

  7. Davis, B., Patron, P., Lane, D.: An augmented reality architecture for the creation of hardware-in-the-loop & hybrid simulation test scenarios for unmanned underwater vehicles. In: OCEANS, pp. 1–6 (2007)

    Google Scholar 

  8. Göktoğan, A., Sukkarieh, S.: An Augmented Reality System for Multi-UAV Missions. In: Proceedings of the Simulation Conference and Exhibition, SimTect, May 9-12. Citeseer, Sydney (2005)

    Google Scholar 

  9. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the Sixth IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, pp. 225–234 (November 2007)

    Google Scholar 

  10. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source multi-robot simulator. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, September 28-October 2, vol. 3, pp. 2149–2154 (2004)

    Google Scholar 

  11. Milgram, P., Colquhoun, H.: A taxonomy of real and virtual world display integration. In: Mixed Reality-Merging Real and Virtual Worlds, pp. 5–28 (1999)

    Google Scholar 

  12. Nishiwaki, K., Kobayashi, K., Uchiyama, S., Yamamoto, H., Kagami, S.: Mixed reality environment for autonomous robot development. In: Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2211–2212 (May 2008)

    Google Scholar 

  13. Stilman, M., Michel, P., Chestnutt, J., Nishiwaki, K., Kagami, S., Kuffner, J.: Augmented reality for robot development and experimentation. Tech. Rep. CMU-RI-TR-05-55, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (November 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, I.YH., MacDonald, B., Wünsche, B. (2012). Evaluating the Effectiveness of Mixed Reality Simulations for Developing UAV Systems. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2012. Lecture Notes in Computer Science(), vol 7628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34327-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34327-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34326-1

  • Online ISBN: 978-3-642-34327-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics