Advertisement

Current Progress in Solid-State Lighting

  • Kartik N. ShindeEmail author
  • S. J. Dhoble
  • H. C. Swart
  • Kyeongsoon Park
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 174)

Abstract

A new era is dawning, the era of solid-state lighting in which the technical community has reason to believe that solid-state lighting will develop into a liberal technology that will benefit humanity at large. Over the past several years, phosphors have been considered as key and technologically important components as the prerequisites to the functionality and success of many lighting and display systems [1, 2]. At present, RE-based phosphors with efficiencies close to the theoretical maximum (100 %) are employed in different fluorescent tubes, X-ray imaging, and color televisions [3, 4]. Such applications depend on the luminescent properties of RE ions, e.g., sharp lines, high efficiency, and high lumen equivalent.

Keywords

Power Conversion Efficiency Blue Lead Lighting Technology Blue Phosphor Lamp Phosphor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Inorganic luminescent materials: 100 years of research and applications. Adv. Funct. Mater. 13, 511 (2003)CrossRefGoogle Scholar
  2. 2.
    G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)Google Scholar
  3. 3.
    C.R. Ronda, Phosphors for lamps and displays: an applicational view. J. Alloy Compd. 225, 534 (1995)CrossRefGoogle Scholar
  4. 4.
    B. Henderson, G.F. Imbusch, Optical Spectroscopy in Inorganic Solids (Clarendon, Oxford, 1998)Google Scholar
  5. 5.
    Basic Research Needs for Solid-state Lightning, Report of the Basic Energy Sciences Workshop on Solid-State Lighting, 22–24 May, 2006, http://science.energy.gov/~/media/bes/pdf/reports/files/ssl_rpt.pdf
  6. 6.
    S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mat. Sci. Eng. Rep. 71(1), 1–34 (2010)Google Scholar
  7. 7.
    S. Nakamura, G. Fasol, Proc. SPIE 26, 3002 (1997)Google Scholar
  8. 8.
    S. Zhang, Y. Huang, Y. Nakai, T. Tsuboi, H.J. Seo, J. Am. Ceram. Soc. 94, 2987 (2011)CrossRefGoogle Scholar
  9. 9.
    L. Elammari, M. El Koumiri, I. Zschokke-Gränacher, B. Elouadi, Ferroelectrics 158, 19 (1994)Google Scholar
  10. 10.
    C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H.J. Seo, J. Phys. D Appl. Phys. 42, 185105 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Zhang, Y. Nakai, T. Tusboi, Y. Huang, H.J. Seo, Inorg. Chem. 50, 2897 (2011)CrossRefGoogle Scholar
  12. 12.
    Z.C. Wu, J.X. Shi, J. Wang, M.L. Gong, Q. Su, J. Solid State Chem. 179, 2356 (2006)CrossRefGoogle Scholar
  13. 13.
    Y.S. Tang, S.F. Hu, C.C. Lin, N.C. Bagkar, R.S. Liu, Appl. Phys. Lett. 90, 151108 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Ye, Z.S. Liu, J.G. Wang, X.P. Jing, MRS Bull 43, 1057 (2008)CrossRefGoogle Scholar
  15. 15.
    Z.D. Hao, J.H. Zhang, X. Zhang, X.Y. Sun, Y.S. Luo, S.Z. Lu, Appl. Phys. Lett. 90, 2611 (2007)Google Scholar
  16. 16.
    Y. Jiang, J. Chen, Z. Xie, L. Zheng, Mater. Chem. Phys. 120, 313 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Lira, A. Mendez, L. Dagdug, H.S. Murrieta, U. Caldino, Phys. Status Solidi B 212, 199 (1999)CrossRefGoogle Scholar
  18. 18.
    S.J. Ramirez, E. Madrigal, F. Ramos, U.C. Garcia, J. Lumin. 71, 169 (1997)CrossRefGoogle Scholar
  19. 19.
    S. Choi, Y.J. Yun, H.-K. Jung, Mater. Lett. 75, 186 (2012)Google Scholar
  20. 20.
    S. Zhang, Y. Huang, Y. Nakai, T. Tsuboi, H.J. Seo, J. Am. Ceram. Soc. 94(9), 2987 (2011)Google Scholar
  21. 21.
    C. Guo, L. Luan, X. Ding, F. Zhang, F.G. Shi, F. Gao, L. Liang, Appl. Phys. B 95, 779 (2009)CrossRefGoogle Scholar
  22. 22.
    F.Q. Ren, D.H. Chen, Appl. Phys. B 98, 159 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Shang, G. Li, D. Geng, D. Yang, X. Kang, Y. Zhang, H. Lian, J. Lin, J. Phys. Chem. C 116, 10222 (2012)Google Scholar
  24. 24.
    J. Alkemper, H. Fuess, Z. Kristallogr. 213, 282 (1998)CrossRefGoogle Scholar
  25. 25.
    J. Lü, Y. Huang, L. Shi, H. J. Seo, Appl. Phys. A 99, 859 (2010)Google Scholar
  26. 26.
    H. Masai, T. Fujiwara, S. Matsumoto, Y. Takahashi, K. Iwasaki, Y. Tokuda, T. Yoko, Opt. Lett. 36, 2868 (2011)Google Scholar
  27. 27.
    Z. Pan, Lu.Yi.-Ying, F. Liu, Nat. Mater. 11, 58 (2012)Google Scholar
  28. 28.
    X. He, J. Zhou, N. Lian, J. Sun, M. Guan, J. Lumin. 130, 743 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Guo, M. Sun, W. Guo, F. Ren, D. Chen, Opt. Laser Technol. 42, 1328 (2010)CrossRefGoogle Scholar
  30. 30.
    S.C. Gedam, S.J. Dhoble, R.B. Pode, J. Lumin. 132, 2693 (2012)CrossRefGoogle Scholar
  31. 31.
    C. Guo, M. Li, Y. Xu, T. Li, Z. Ren, J. Bai, Appl. Surf. Sci. 257, 8836 (2011)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, Z. Lu, H. Yang, P. Han, N. Xu, Q. Zhang, J. Alloys Comp. 512, 5 (2012)CrossRefGoogle Scholar
  33. 33.
    J.S. Kim, H.J. Song, H.S. Roh, D.K. Yim, J.H. Noh, K.S. Hong, Mater. Lett. 79, 112 (2012)CrossRefGoogle Scholar
  34. 34.
    F.G. Meng, X.M. Zhang, H.J. Seo, Opt. Laser Technol. 44, 185 (2012)CrossRefGoogle Scholar
  35. 35.
    G. Ju, Y. Hu, L. Chen, X. Wang, Z. Mu, H. Wu, F. Kang, Opt. Laser Technol. 44, 39 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Cai, W. Xie, L. Hao, X. Xu, S. Agathopoulos, Mater. Sci. Eng. B 177, 635 (2012)CrossRefGoogle Scholar
  37. 37.
    H. Xianghong, G. Mingyun, L. Zhongchun, S. Tongming, L. Ning, Z. Quanfa, J. Rare Earths 28, 878 (2010)CrossRefGoogle Scholar
  38. 38.
    C. Wan, J. Meng, F. Zhang, X. Deng, C. Yang, Solid State Commun. 150, 1493 (2010)CrossRefGoogle Scholar
  39. 39.
    S. Xiaoli, H. Yanlin, Y. Jie, S. Liang, Q. Xuebin, H.J. Seo, J. Rare Earths 28, 693 (2010)CrossRefGoogle Scholar
  40. 40.
    Y.C. Chiu, W.R. Liu, C.K. Chang, C.C. Liao, Y.T. Yeh, S.M. Jang, T.M. Chen, J. Mater. Chem 20, 1755 (2010)CrossRefGoogle Scholar
  41. 41.
    P. You, G. Yin, X. Chen, B. Yue, Z. Huang, X. Liao, Y. Yao, Opti. Mat. 33, 1808 (2011)CrossRefGoogle Scholar
  42. 42.
    H.S. Roh, S. Hur, H.J. Song, I.J. Park, D.K. Yim, D.-W. Kim, K.S. Hong, Mater. Lett. 70, 37 (2012)Google Scholar
  43. 43.
    I.S. Cho, D.K. Yim, C.H. Kwak, J.S. An, H.S. Roh, K.S. Hong, J. Lumin. 132, 375 (2012)Google Scholar
  44. 44.
    Q. Liu, Y. Liu, Z. Yang, X. Li, Y. Han, Spectrochimica Acta Part A 87, 190 (2012)Google Scholar
  45. 45.
    W. Zhao, S. An, B. Fan, S. Li, Y. Dai, J. Lumin. 132, 953 (2012)Google Scholar
  46. 46.
    Y.Y. Luo, D.S. Jo, K. Senthil, S. Tezuka, M. Kakihana, K. Toda, T. Masaki, D.H. Yoon, J. Solid State Chem. 189, 68–74 (2012)Google Scholar
  47. 47.
    Y.-H. Yun, K.-Y. Kim, U.-K. Paik, Ceram. Int. 38, 1599 (2012)Google Scholar
  48. 48.
    K.K. Shaat, H.C. Swart, O.M. Ntwaeaborwa, Opt. Mater. Express 2(7), 962 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kartik N. Shinde
    • 1
    Email author
  • S. J. Dhoble
    • 2
  • H. C. Swart
    • 3
  • Kyeongsoon Park
    • 4
  1. 1.Department of PhysicsN.S. Science and Arts CollegeBhadrawatiIndia
  2. 2.Department of PhysicsR.T.M. Nagpur UniversityNagpurIndia
  3. 3.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa
  4. 4.Faculty of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulRepublic of Korea (South Korea)

Personalised recommendations