Advertisement

Some Halophosphates Phosphors

  • Kartik N ShindeEmail author
  • S J Dhoble
  • H C Swart
  • Kyeongsoon Park
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 174)

Abstract

The Halophosphate phosphor is defined as a phosphor with the apatite mineral structure. Almost all commonly found tubes on the global lighting market employ an internal coating of calcium halophosphate materials (generally known simply as ‘Halophosphate’ tubes). This revolutionary material was invented in 1942 by a group led by A. H. McKeag of Osram-GEC in London, and succeeded in almost doubling lamp efficiency. This breakthrough was responsible for propelling the fluorescent business into the vast market. However, by modern standards, halophosphate materials are relatively inefficient and deliver inferior lighting quality compared to newer technologies of fluorescent phosphors. Although fluorescent tubes have low initial purchase cost, this was rapidly offset by the increased electrical power consumption required to generate a given amount of light. Owing to their lesser energy efficiency, halophosphate tubes are being phased out and shortly replaced by other more efficient fluorescent phosphor materials. These phosphors are blends of two different materials which radiate broadly in the blue and orange parts of the spectrum, respectively. By changing the ratio of the two components a full range of warm to cool white hues can be achieved.

Keywords

Color Center Host Lattice Ammonium Dihydrogen Phosphate Photoluminescence Excitation Spectrum Lamp Industry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Jie, C. Guo, Z. Ren, J. Bai, Opt. Laser Technol. 43, 762 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Hirano, S. Shionoya, J. Phys. Soc. Jpn. 28, 926 (1970)CrossRefGoogle Scholar
  3. 3.
    D.K. Sardar, W.A. Sibley, R. Alcala, J. Lumin. 27, 2738 (1982)CrossRefGoogle Scholar
  4. 4.
    D. Noetzold, G. Herzog, I. Henke, Anorg. Allg. Chem. 613, 127 (1992)Google Scholar
  5. 5.
    M. Sato, T. Tanaka, M. Ohota, J. Electrochem. Soc. 141, 1851 (1994)CrossRefGoogle Scholar
  6. 6.
    R.W. Warren, Phys. Rev. B 6, 4679 (1972)CrossRefGoogle Scholar
  7. 7.
    S.J. Dhoble, S.V. Moharil, T.K. Gundu Rao, J. Lumin. 126, 383 (2007)CrossRefGoogle Scholar
  8. 8.
    S.J. Dhoble, V.B. Pawade, K.N. Shinde, Eur. Phys. J. Appl. Phys. 52, 11104 (2010)CrossRefGoogle Scholar
  9. 9.
    K.N. Shinde, I.M. Nagpure, A.B. Fulke, S.J. Dhoble, Luminescence 26, 363 (2011)CrossRefGoogle Scholar
  10. 10.
    I.M. Nagpure, K.N. Shinde, S.J. Dhoble, A. Kumar, J. Alloys Compd. 481, 632 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Kottaisamy, R. Jagannathan, P. Jeyagopal, R.P. Rao, R.L. Narayanan, J. Phys. D: Appl. Phys. 27, 2210 (1994)CrossRefGoogle Scholar
  12. 12.
    International Centre of Diffraction Data/Powder Diffraction File 2, 17–609, 071–1316 and 015–0876Google Scholar
  13. 13.
    A.N. Akhavan-Niaki, Ann. Chim. (France) 6, 51 (1961)Google Scholar
  14. 14.
    K. Sudarsanan, R.A. Young, Acta Cryst. B 30, 1381 (1974)CrossRefGoogle Scholar
  15. 15.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  16. 16.
    D. NoÈtzold, H. Wulff, Phys. Stat. Sol. (b) 207, 271 (1998)CrossRefGoogle Scholar
  17. 17.
    S.R. Jam, K.C. Adiga, V.R.P. Vemeker, Combust. Flame 40, 71 (1981)CrossRefGoogle Scholar
  18. 18.
    H. Choi, Ch.H. Kim, Ch.H. Pyun, S.J. Kim, J. Lumin. 82, 25 (1999)Google Scholar
  19. 19.
    J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem. 179, 266 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mater. 14, 2224 (2002)CrossRefGoogle Scholar
  21. 21.
    L. Sun, C. Qian, C. Liao, X. Wang, C. Yan, Solid State Commun. 119, 393 (2001)CrossRefGoogle Scholar
  22. 22.
    D. Jia, W.M. Yen, J. Lumin. 101, 115 (2003)CrossRefGoogle Scholar
  23. 23.
    Q. Su, J. Lin, B. Li, J. Alloys Compd. 225, 120 (1995)CrossRefGoogle Scholar
  24. 24.
    G. Blasse, Lumin. Inorg. Solids 475, 215 (1978)Google Scholar
  25. 25.
    A. Stevels, L.N. Schrama-de Pauw, Electrochem. Soc. 123, 691 (1976)CrossRefGoogle Scholar
  26. 26.
    K.N. Shinde, I.M. Nagpure, S.J. Dhoble, Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 41, 107 (2011)Google Scholar
  27. 27.
    Y. Dong, G. Zhou, X. Jun, G. Zhao, F. Su, L. Su, G. Zhang, D. Zhang, H.J. Li, Mater. Res. Bull. 41, 1959–1963 (2006)Google Scholar
  28. 28.
    K. Toda, J. Alloys Compd. 408, 665 (2006)CrossRefGoogle Scholar
  29. 29.
    V.P. Dotsenko, I.V. Berezovskaya, N.P. Efryushina, A.S. Voloshinovskii, P. Dorenbos, C.W.E. van Eijk, J. Lumin. 93, 137 (2001)CrossRefGoogle Scholar
  30. 30.
    C.-K. Chang, T.-M. Chen, Appl. Phys. Lett. 91, 081902 (2007)CrossRefGoogle Scholar
  31. 31.
    R. Yu, J. Wang, J. Zhang, H. Yuan, Q.J. Su, Solid State Chem. 181, 658 (2008)CrossRefGoogle Scholar
  32. 32.
    X. Zhang, H. He, Z. Li, T. Yu, Z. Zou, J. Lumin. 128, 1876 (2008)CrossRefGoogle Scholar
  33. 33.
    G. Blasse, A.J. Bril, Electrochem. Soc. 115, 10967 (1968)Google Scholar
  34. 34.
    K.S. Sohn, B. Cho, H.D. Park, Y.G. Choi, K.H. Kim, J. Eur. Ceram. Soc. 20, 1043 (2000)CrossRefGoogle Scholar
  35. 35.
    V.B. Bhatkar, S.K. Omanwar, S.V. Moharil, Phys. Stat. Sol. A 191(1), 272 (2002)CrossRefGoogle Scholar
  36. 36.
    M. Kottaisamy, R.M. Mohan, D. Jeyakumar, J. Mater. Chem. 7(2), 345 (1997)Google Scholar
  37. 37.
    K. Toda, Phys. Stat. Sol. A191(1), 272 (2002)Google Scholar
  38. 38.
    E.V. Sokolova, Y.K. Kabalov, G. Ferraris, J. Schneider, A.P. Khomyakov, Concepts. Can. Mineral 37, 83 (1999)Google Scholar
  39. 39.
    D.T. Palumbo, J.J. Brown Jr, J. Electrochem. Soc. 117(9), 1184 (1970)CrossRefGoogle Scholar
  40. 40.
    D.T. Palumbo, J.J. Brown Jr, J. Electrochem. Soc. 118, 1159 (1971)Google Scholar
  41. 41.
    T. Koskentato, M. Leskel, L. Niinisto, Mater. Ref. Bull. 20, 265 (1985)CrossRefGoogle Scholar
  42. 42.
    A. Morell, N. Khiati, J. Electrochem. Soc. 140, 2019 (1993)CrossRefGoogle Scholar
  43. 43.
    C. Barthou, J. Benoit, P. Benalloul, A. Morell, J. Electrochem. Soc. 141, 524 (1994)Google Scholar
  44. 44.
    S.J. Dhoble, K.N. Shinde, Adv. Mat. Lett. 2(5), 349–353 (2011)Google Scholar
  45. 45.
    F.C. Hawthorne, Can. Miner. 20, 263 (1982)Google Scholar
  46. 46.
    B.D. Cullity, Elements of X-Ray Diffraction (Addision-Wesley, London, 1978)Google Scholar
  47. 47.
    U. Rambabu, S. Buddhudu, Opt. Mater. 17, 401 (2001)CrossRefGoogle Scholar
  48. 48.
    L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, X. Kong, J. Phys. Chem. 108, 16697 (2004)CrossRefGoogle Scholar
  49. 49.
    J. Dexpert-Ghys, R. Mauricot, M.D. Faucher, J. Lumin. 69, 203 (1996)CrossRefGoogle Scholar
  50. 50.
    S.J. Dhoble, J. Phys. D: Appl. Phys. 33, 158 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kartik N Shinde
    • 1
    Email author
  • S J Dhoble
    • 2
  • H C Swart
    • 3
  • Kyeongsoon Park
    • 4
  1. 1.Department of PhysicsN.S. Science and Arts CollegeBhadrawatiIndia
  2. 2.Department of PhysicsR.T.M. Nagpur UniversityNagpurIndia
  3. 3.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa
  4. 4.Faculty of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulRepublic of Korea (South Korea)

Personalised recommendations