Advertisement

Some Orthophosphate Phosphors

  • Kartik N. ShindeEmail author
  • S. J. Dhoble
  • H. C. Swart
  • Kyeongsoon Park
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 174)

Abstract

The orthophosphate group, is the most common phosphorus oxoanion also known as phosphoric acid. All four oxygen atoms, are usually coordinated to cations in solid orthophosphates leading to strongly bonded, extended structures. The acid orthophosphate anions, hydrogen phosphate, and dihydrogen phosphate are also found in many materials. Almost every metallic element forms an orthophosphate, and a range of oxidation states is stabilized for transition elements. The orthophosphates were the last family of phosphors to be introduced before the present material yttrium vanadate came into service. They are all activated with tin, which must be in the divalent state to give luminescence.

Keywords

Excitation Spectrum Combustion Synthesis Crystal Field Splitting Prepared Phosphor Local Site Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, Mater. Lett. 62, 1884 (2008)CrossRefGoogle Scholar
  2. 2.
    C. Qin, Y. Huang, L. Shi, G. Chen, X. Qiao, H.J. Seo, J. Phys. D: Appl. Phys. 42, 185105 (2009)CrossRefGoogle Scholar
  3. 3.
    W.B. Im, H.S. Yoo, S. Vaidyanathan, K.H. Kwon, H.J. Park, Y-Il Kim, D.Y. Jeon, Mater. Chem. Phys. 115, 161 (2009)Google Scholar
  4. 4.
    C.C. Lin, Y.S. Tang, S.F. Hu, R.S. Liu, J. Lumin. 129, 1682 (2009)CrossRefGoogle Scholar
  5. 5.
    Y.S. Tang, S.F. Hu, C.C. Lin, N.C. Bagkar, R.S. Liu, Appl. Phys. Lett. 90, 151108 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Wanjun, C. Donghua, J. Am. Ceram. Soc. 92, 1059 (2009)CrossRefGoogle Scholar
  7. 7.
    Z.C. Wu, J.X. Shi, J. Wang, M.L. Gong, Q. Su, J. Solid-State Chem. 179, 2356 (2006)CrossRefGoogle Scholar
  8. 8.
    K.N. Shinde, I.M. Nagpure, A.B. Fulke, S.J. Dhoble, Luminescence 26, 363 (2011)Google Scholar
  9. 9.
    E. Olsen, J. Am. Mineral. 62, 362 (1977)Google Scholar
  10. 10.
    M. Ben Amara, M. Vlasse, G. Leflem, J. Acta Cryst. C39, 1483 (1983)Google Scholar
  11. 11.
    Y. He, B. Quan, Y. Wang, C. Cheng, B. Wang, Mater. Lett. 61, 4519 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Hirayama, N. Sonoyama, A. Yamada, R. Kanno, J. Solid State Chem. 182, 730 (2009)CrossRefGoogle Scholar
  13. 13.
    S.W. Kim, T. Masui, H. Matsushita, N. Imanaka, Chem. Lett. 38, 1010 (2009)CrossRefGoogle Scholar
  14. 14.
    P. Pasierb, Mater. Sci. 24, 279 (2006)Google Scholar
  15. 15.
    N. Imanaka, A. Ogura, M. Kamikawa, Electrochem. Commun. 3, 451 (2001)CrossRefGoogle Scholar
  16. 16.
    J.P. Boilot, P. Salanie, G. Desplanches, D.L. Potier, Mater. Res. Bull. 14, 1469 (1979)CrossRefGoogle Scholar
  17. 17.
    T. Masui, K. Koyabu, S. Tamura, N. Imanaka, J. Alloys Compd. 418, 73 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Mouline, M. Alami, R. Brochu, R. Olazcuaga, C. Parent, G. Le Flem, J. Solid State Chem. 152, 453 (2000)CrossRefGoogle Scholar
  19. 19.
    O.V. Chukova, R.S. Boyko, S.G. Nedilko, Funct. Mater. 11, 147 (2004)Google Scholar
  20. 20.
    K.N. Shinde, S.J. Dhoble, Animesh Kumar. Physica B 406, 94 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem. 179, 266 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mater. 14, 2224 (2002)CrossRefGoogle Scholar
  23. 23.
    O.A. Lopez, J. Mckittrick, L.E. Shea, J. Lumin. 71, 1 (1997)CrossRefGoogle Scholar
  24. 24.
    D.T. Palumbo, J.J. Brown Jr., J. Electrochem. Soc. 117, 1184 (1970)Google Scholar
  25. 25.
    D.T. Palumbo, J.J. Brown Jr., J. Electrochem. Soc. 118, 1159 (1971)Google Scholar
  26. 26.
    W.J. Xie, J.Y. Tang, L.Y. Hao, X. Xu, Opt. Mater. 32, 274 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Ye, J.H. Zhang, X. Zhang, S.Z. Lu, X.G. Ren, X.J. Wang, J. Appl. Phys. 101, 033513 (2007)CrossRefGoogle Scholar
  28. 28.
    F.R. de Gruijl, Radiat. Protect. Dosim. 91, 57 (2000)CrossRefGoogle Scholar
  29. 29.
    J.A. Parrish, K.F. Jaenicke, J. Investig. Dermatol. 76, 359 (1981)CrossRefGoogle Scholar
  30. 30.
    Y.Z. Li, Y.H. Wang, Z.F. Wang, Z.Y. Zhang, J. Lumin. 130, 1225 (2010)CrossRefGoogle Scholar
  31. 31.
    K.N. Shinde, S.J. Dhoble, A. Kumar, J. Rare Earths 29(6), 527 (2011)Google Scholar
  32. 32.
    J.J. Lammers, H.C.G. Verhaar, G. Blasse, Chem. Phys. 16, 63 (1986)Google Scholar
  33. 33.
    S.H.M. Poort, W. Janssen, G. Blasse, J. Alloys Compd. 260, 93 (1997)CrossRefGoogle Scholar
  34. 34.
    E.N. Silva, A.P. Ayala, I. Guedes, C.W.A. Paschoal, R.L. Moreira, C.K. Loong, L.A. Boatner, Opt. Mater. 29, 224 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Ben Amara, M. Vlasse, G. Le Flem, P. Hagenmuller, Acta Crystallogr. Sect. C 39, 1483 (1983)Google Scholar
  36. 36.
    L. van Pieterson, M.F. Reid, R.T. Wegh, S. Soverna, A. Meijerink, Phys. Rev. B 65, 045113 (2002)Google Scholar
  37. 37.
    P. Dorenbos, Phys. Rev. B 62, 15640 (2000)CrossRefGoogle Scholar
  38. 38.
    S. Saito, K. Wada, R. Onaka, J. Phys. Soc. Jpn. 37, 711 (1974)CrossRefGoogle Scholar
  39. 39.
    T. Szczurek, M. Schlesinger, in Rare Earths Spectroscopy, ed. by B. Jezowska-Trzebiatowska, J. Legendziewicz, W. Strek (World Scientific, Singapore, 1985)Google Scholar
  40. 40.
    G. Blasse, J. Solid State Chem. 62, 207 (1986)CrossRefGoogle Scholar
  41. 41.
    L.I. Guanghuan, L. Tao, S. Yanhua, G. Guimei, X.U. Jijing, A.N. Baichao, G. Shucai, H. Guangyan, J. Rare Earths 28, 22 (2010)Google Scholar
  42. 42.
    Z. Lou, J. Hao, Thin Solid Films 450, 334 (2004)CrossRefGoogle Scholar
  43. 43.
    U. Rambabu, S. Buddhudu, Opt. Mater. 17, 401 (2001)Google Scholar
  44. 44.
    L. Yu, H. Song, S. Lu, Z. Liu, L. Yang, X. Kong, J. Phys. Chem. 108, 16697 (2004)CrossRefGoogle Scholar
  45. 45.
    J. Dexpert-Ghys, R. Mauricot, M.D. Faucher, J. Lumin. 69, 203 (1996)Google Scholar
  46. 46.
    Y. Qiao, X. Zhang, X. Ye, Y. Chen, H. Guo, J. Rare Earths 27, 323 (2009)Google Scholar
  47. 47.
    J. Kuang, Y. Liu, J. Zhang, J. Solid State Chem. 179, 266 (2006)Google Scholar
  48. 48.
    E. Cavalli, M. Bettinelli, A. Belletti, A. Speghini, J. Alloys Compd. 341, 107 (2002)CrossRefGoogle Scholar
  49. 49.
    M. Yu, J. Lin, Z. Zhang, J. Fu, S. Wang, H.J. Zhang, Y.C. Ham, Chem. Mater. 14, 2224 (2002)Google Scholar
  50. 50.
    D. Jia, W.M. Yen, J. Lumin. 101, 115 (2003)CrossRefGoogle Scholar
  51. 51.
    G.B. Stringfellow, M.G. Craford (ed.), vol. 48, ed. by R.K. Willardson, E.R. Weber (Academic Press, San Diego, 1997)Google Scholar
  52. 52.
    S. Shionoya, W.M. Yen, Phosphor Handbook (Phosphor Research Society, CRC Press, Boca Raton, 1998), p. 459Google Scholar
  53. 53.
    Color Calculator version 2, A software from Radiant Imaging, Inc., 2007Google Scholar
  54. 54.
    I.M. Nagpure, K.N. Shinde, V. Kumar, O.M. Ntwaeaborwa, S.J. Dhoble, H.C. Swart, J. Alloys Compds. 492, 384 (2010)Google Scholar
  55. 55.
    O.P. Shrivastava, R. Chourasia, N. Kumar, Ann. Nucl. Energy 35, 1147 (2008)CrossRefGoogle Scholar
  56. 56.
    A. Lempicki, E. Berman, A.J. Wojtowicz, M. Balcerzyk, L.A. Boatner, IEEE T. Nucl. Sci. 40, 384 (1993)CrossRefGoogle Scholar
  57. 57.
    A.J. Wojtowicz, A. Lempicki, D. Wisniewaski, L.A. Boatner, Materrials Research Society Symposium (San Francisco, CA, 1994), p. 348Google Scholar
  58. 58.
    A.J. Wojtowicz, Conference Record EURODIM 94 (Lyon, France, 1994)Google Scholar
  59. 59.
    T. Koskentato, M. Leskel, L. Niinisto, Mater. Ref. Bull. 20, 265 (1985)CrossRefGoogle Scholar
  60. 60.
    K.N. Shinde, S.J. Dhoble, J. Fluoresc. 21, 2053 (2011)CrossRefGoogle Scholar
  61. 61.
    M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mater. 14(5), 2224 (2002)Google Scholar
  62. 62.
    R.S. Yadav, R.K. Dutta, M. Kumar, A.C. Pandey, J. Lumin. 129, 1078 (2009)Google Scholar
  63. 63.
    M.M. Haque, H.L. Lee, D.K. Kim, J. Alloy Compd. 481, 792 (2009)Google Scholar
  64. 64.
    I. Omkaram, B.V. Rao, S. Buddhudu, J. Alloy Compd. 474, 565 (2009)Google Scholar
  65. 65.
    K.N. Shinde, S.J. Dhoble, Adv. Mater. Res. 306307, 171 (2011)Google Scholar
  66. 66.
    K.N. Shinde, S.J. Dhoble, Optik 123 (21), 1975 (2012). doi: 10.1016/j.ijleo.2011.09.033
  67. 67.
    E. Sokolova, F.C. Hawthorne, A.P. Khomyakov, Can. Mineral. 43(5), 1521 (2005)Google Scholar
  68. 68.
    E.V. Sokolova, Y.K. Yegorov-Tismenko, N.A. Yamnova, M.A. Simonov, Sov. Phys. Crystallogr. 29, 1079 (1984)Google Scholar
  69. 69.
    Y. Huang, W. Kai, K. Jang, H.S. Lee, X. Wang, Y. Zhang, D. Qin, C. Jiang, Mat. Lett. 62, 1913 (2008)CrossRefGoogle Scholar
  70. 70.
    G. Blasse, B.C. Grabmaier, Luminescent Materials, Chap. 3 (Springer, Berlin, 1994)Google Scholar
  71. 71.
    Z.-C. Wu, J. Liu, W.-G. Hou, J. Xu, M.-L. Gong, J. Alloys Compd. 498, 139 (2010)CrossRefGoogle Scholar
  72. 72.
    G.B. Stringfellow, M.G. Craford (eds.), in High Brightness Light Emitting Diodes, vol. 48, ed. by R.K. Willardson, E.R. Weber (Academic Press, San Diego, 1997)Google Scholar
  73. 73.
    S. Shionoya, W.M. Yen, Phosphor Handbook (Phosphor Research Society) (CRC Press, Boca Raton, 1998), p. 459Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kartik N. Shinde
    • 1
    Email author
  • S. J. Dhoble
    • 2
  • H. C. Swart
    • 3
  • Kyeongsoon Park
    • 4
  1. 1.Department of PhysicsN.S. Science and Arts CollegeBhadrawatiIndia
  2. 2.Department of PhysicsR.T.M. Nagpur UniversityNagpurIndia
  3. 3.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa
  4. 4.Faculty of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulRepublic of Korea (South Korea)

Personalised recommendations