Probabilistic Splicing Systems

  • Sherzod TuraevEmail author
  • Mathuri Selvarajoo
  • Mohd Hasan Selamat
  • Nor Haniza Sarmin
  • Wan Heng Fong
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 457)


In this paper we introduce splicing systems with probabilities, i.e., probabilistic splicing systems, and establish basic properties of language families generated by this type of splicing systems. We show that a simple extension of splicing systems with probabilities may increase the computational power of splicing systems with finite components.


Language Family Discrete Apply Mathematic Formal Language Theory Probabilistic Automaton Splice System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.: Molecular computation of solutions to combinatorial problems. Science, 1021–1024 (November 11, 1994)Google Scholar
  2. 2.
    Lipton, R.J.: Using DNA to solve NP–complete problems. Science, 542–545 (April 28, 1995)Google Scholar
  3. 3.
    Boneh, D., Dunworth, C., Lipton, R., Sgall, J.: On the computational power of DNA. Discrete Applied Mathematics, Special Issue on Computational Molecular Biology, 79–94 (1996)Google Scholar
  4. 4.
    Head, T.: Formal language theory and DNA: An analysis of the generative capacity of specific recombination behaviors. Bull. Math. Biology, 737–759 (1987)Google Scholar
  5. 5.
    Pixton, D.: Regularity of splicing languages. Discrete Applied Mathematics, 101–124 (1996)Google Scholar
  6. 6.
    Pǎun, G., Rozenberg, G., Salomaa, A.: DNA computing. New computing paradigms. Springer (1998)Google Scholar
  7. 7.
    Booth, T., Thompson, R.: Applying probability measures to abstract languages. IEEE Transactions on Computers 22, 442–450 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ellis, C.A.: Probabilistic Languages and Automata. PhD thesis, Department of Computer Science, University of Illinois (1969)Google Scholar
  9. 9.
    Fu, K.S., Li, T.: On stochastic automata and languages. Inter. J. Information Sci. (1969)Google Scholar
  10. 10.
    Rabin, M.: Probabilistic automata. Information and Control 6, 230–245 (1963)CrossRefGoogle Scholar
  11. 11.
    Salomaa, A.: Probabilistic and weighted grammars. Information and Control 15, 529–544 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Smith, N., Johnson, M.: Weighted and probabilistic context-free grammars are equally expressive. IEEE Transactions on Computers 33, 477–491 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kornai, A.: Probabilistic grammars and languages. Journal of Logic, Language and Information 20, 317–328 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fowler, T.: The Generative Power of Probabilistic and Weighted Context-Free Grammars. In: Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, vol. 6878, pp. 57–71. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Rozenberg, G., Salomaa, A.: Handbook of formal languages, vol. 1-3. Springer (1997)Google Scholar
  16. 16.
    Dassow, J., Pǎun, G.: Regulated rewriting in formal language theory. Springer, Berlin (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sherzod Turaev
    • 1
    Email author
  • Mathuri Selvarajoo
    • 2
  • Mohd Hasan Selamat
    • 3
  • Nor Haniza Sarmin
    • 2
    • 4
  • Wan Heng Fong
    • 4
  1. 1.Department of Computer Science Kulliyah of Information and Communication TechnologyInternational Islamic University MalaysiaKuala LumpurMalaysia
  2. 2.Department of Mathematical Sciences, Faculty of ScienceUniversiti Teknologi MalaysiaJohorMalaysia
  3. 3.Faculty of Computer Science and Information TechnologyUniversiti Putra MalaysiaSelangorMalaysia
  4. 4.Ibnu Sina Institute for Fundamental Science StudiesUniversiti Teknologi MalaysiaJohorMalaysia

Personalised recommendations