Advertisement

Meta-evolution Modelling: Beyond Selection/Mutation-Based Models

  • Mariusz NowostawskiEmail author
Conference paper
  • 1.1k Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 457)

Abstract

In this position article we argue the need for integrative approach to evolutionary modelling and point out some of the limitations of the traditional selection/mutation-based models. We argue a shift towards fine-grained detailed and integrated evolutionary modelling. Selection/mutation-based models are limited and do not provide a sufficient depth to provide reductionists insights into the emergence of (biological) evolutionary mechanisms. We propose that selection/mutation should be augmented with explicit hierarchical evolutionary models. We discuss limitations of the selection/mutation models, and we argue the need for detailed integrated modelling approach that goes beyond selection/mutation. We propose our own research framework based on computational meta-evolutionary approach, called Evolvable Virtual Machines (EVM) to address some of the challenges.

Keywords

Evolutionary Dynamic Evolutionary Trajectory Grammatical Evolution Evolutionary Phenomenon Random Heuristic Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adami, C.: Introduction to Artificial Life, 1st edn. Springer (July 30, 1999)Google Scholar
  2. 2.
    Hutter, M.: The fastest and shortest algorithm for all well-defined problems. International Journal of Foundations of Computer Science 13(3), 431–443 (2002), http://citeseer.ist.psu.edu/hutter02fastest.html, http://arxiv.org/abs/cs.CC/0206022
  3. 3.
    Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)Google Scholar
  4. 4.
    Margulis, L.: Origin of Eukaryotic Cells. University Press, New Haven (1970)Google Scholar
  5. 5.
    Margulis, L.: Symbiosis in Cell Evolution. Freeman & Co., San Francisco (1981)Google Scholar
  6. 6.
    Margulis, L., Sagan, D.: Microcosmos: Four Billion Years of Evolution from Our Microbial Ancestors. Summit Books, New York (1986)Google Scholar
  7. 7.
    Mattick, J.S., Gagen, M.J.: The evolution of controlled multitasked gene networks: The role of introns and other noncoding rnas in the development of complex organisms. Molecular Biology and Evolution 18(9), 1611–1630 (2001)CrossRefGoogle Scholar
  8. 8.
    Mereschkowsky, K.S.: Ueber ber natur und ursprung der chromatophoren im pflanzenreiche. Biol. Zentralbl. 25, 593–604 (1905)Google Scholar
  9. 9.
    Moncion, T., Amar, P., Hutzler, G.: Automatic characterization of emergent phenomena in complex system. Journal of Biological Physics and Chemistry 10 (2010)Google Scholar
  10. 10.
    Frontiers in population biology. Tech. Rep. biorpt1098, National Science Foundation (NSF), USA, Rutgers University (October 1998), http://www.nsf.gov/pubs/reports/frontiers_population_bio_disclaimer.pdf
  11. 11.
    Frontiers in evolutionary research. Tech. Rep. biorpt080706, National Science Foundation, Rutgers University (March 2005), http://www.nsf.gov/pubs/reports/frontiers_evolution_bio.pdf
  12. 12.
    Nowostawski, M.: Evolvable Virtual Machines. Ph.D. thesis, Information Science Department, University of Otago, Dunedin, New Zealand (December 2008)Google Scholar
  13. 13.
    Nowostawski, M., Epiney, L., Purvis, M.: Self-adaptation and Dynamic Environment Experiments with Evolvable Virtual Machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 46–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Nowostawski, M., Purvis, M.K.: Engineering Self-Organising Systems. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 176–191. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Ofria, C., Wilke, C.O.: Avida: A software platform for research in computational evolutionary biology. Artificial Life 10, 191–229 (2004)CrossRefGoogle Scholar
  16. 16.
    Olsson, R.: Inductive functional programming using incremental program transformation. Artificial Intelligence 74(1), 55–81 (1995), http://www.ia-stud.hiof.no/~rolando/art_int_paper_74.ps Google Scholar
  17. 17.
    Ray, T.S.: An approach to the synthesis of life. In: Langton, C., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity, vol. XI, pp. 371–408. Addison-Wesley, Redwood City (1991)Google Scholar
  18. 18.
    Ray, T.S.: Is it alive, or is it GA? In: Belew, R.K., Booker, L.B. (eds.) Proceedings of the 1991 International Conference on Genetic Algorithms, pp. 527–534. Morgan Kaufmann, San Mateo (1991)Google Scholar
  19. 19.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical Evolution: Evolving Programs for an Arbitrary Language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998), http://link.springer.de/link/service/series/0558/papers/1391/13910083.pdf CrossRefGoogle Scholar
  20. 20.
    Schmidhuber, J.: The speed prior: a new simplicity measure yielding near-optimal computable predictions (2002), http://citeseer.ist.psu.edu/schmidhuber02speed.html
  21. 21.
    Schmidhuber, J.: Self-referential learning, or on learning how to learn: The meta-meta-... hook. Diploma thesis, Institut fuer Informatik, Technische Universitaet Muenchen (1987), http://www.idsia.ch/~juergen/diploma.html
  22. 22.
    Schmidhuber, J.: Optimal ordered problem solver. Tech. Rep. IDSIA-12-02, IDSIA (July 31, 2002), ftp://ftp.idsia.ch/pub/juergen/oops.ps.gz
  23. 23.
    Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004)zbMATHCrossRefGoogle Scholar
  24. 24.
    Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the Push programming language. Genetic Programming and Evolvable Machines 3(1), 7–40 (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  26. 26.
    Wallin, I.: Symbionticism and the Origin of Species. Williams & Wilkins, Baltimore (1927)CrossRefGoogle Scholar
  27. 27.
    Wolfram, S.: A New Kind of Science, 1st edn. Wolfram Media, Inc. (May 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Information Science DepartmentUniversity of OtagoDunedinNew Zealand

Personalised recommendations