Skip to main content

Shocks in Cavitating Flows

  • Chapter
Bubble Dynamics and Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

Abstract

We present two numerical methods for simulation of compressible multiphase flows with phase transition. The first approach is a two-fluid method using sharp interface treatment and non-equilibrium mass transfer terms. This technique is applied to investigate collapsing vapor bubbles and resulting shock patterns. Depending on the bubble–wall configuration, different types of liquid jets are observed during the collapse stages of the bubbles. These results provide detailed insight into collapse processes and resulting peak loads. The second approach is a singlefluid method using local thermodynamic equilibrium assumptions. Its applicability to simulate cavitating flows is assessed on example of hydrofoil cavitation as well as for the collapse of a bubble cluster. Typical features of sheet and cloud cavitation are reproduced and the formation of shocks due to collapsing vapor regions is analyzed. In case of the investigated cluster of vapor bubbles, a collapse front propagating toward the focal point of the collapse is predicted. This process leads to an amplification of the intensity of the final collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, A., Morch, K.A.: In situ Measurement of the Tensile Strength of Water. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4 - 6 (2011)

    Google Scholar 

  2. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press (1995)

    Google Scholar 

  3. Brennen, C.E.: An Introduction to Cavitation Fundamentals. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4 - 6 (2011)

    Google Scholar 

  4. D’Agostino, L., Salvetti, M.V.: Fluid Dynamics of Cavitation and Cavitating Turbopumps. Springer (2007)

    Google Scholar 

  5. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comp. Phys. 152, 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Franc, J.P., Michel, J.M.: Fundamentals of Cavitation. Springer (2004)

    Google Scholar 

  7. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer (2009)

    Google Scholar 

  8. Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press (2007)

    Google Scholar 

  9. Gullbrand, J., Chow, F.K.: The Effect of Numerical Errors and Turbulence Models in Large-Eddy Simulations of Channel Flow, with and without Explicit Filtering. J. Fluid Mech. 495 (2003)

    Google Scholar 

  10. Hickel, S., Mihatsch, M., Schmidt, S.J.: Implicit Large Eddy Simulation of Cavitation in Micro Channel Flows. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4-6 (2011)

    Google Scholar 

  11. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. John Wiley and Sons (1954)

    Google Scholar 

  12. Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comp. Phys. 219, 553–578 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. The International Association for the Properties of Water and Steam, http://www.iapws.org/

  14. Jiang, G.S., Shu, C.W.: Efficient Implementation of Weighted ENO schemes. J. Comp. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kawanami, J., Kato, H., Yamaguchi, H.: Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydofoil. In: Proc. 3rd CAV 1998 - 3rd International Symposium on Cavitation, Grenoble, France, April 7-10, 1998, vol. 1, pp. 191-196 (2009)

    Google Scholar 

  16. Kendrinskii, V.K.: Hydrodynamics of Explosion. Springer (2005)

    Google Scholar 

  17. Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations. Applied Numerical Mathematics, vol. 35 (2000)

    Google Scholar 

  18. Knapp, R.T., Daily, J.W., Hammitt, F.G.: Cavitation. McGraw-Hill (1970)

    Google Scholar 

  19. Lauer, E., Hu, X.Y., Hickel, A., Adams, N.A.: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Phys. Fluids (accepted 2012)

    Google Scholar 

  20. Lauer, E., Hu, X.Y., Hickel, A., Adams, N.A.: Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comp. Fluids (under revision)

    Google Scholar 

  21. Lauterborn, W.: Cavitation and Inhomogeneities in Underwater Acoustics. Springer (1980)

    Google Scholar 

  22. Lecoffre, Y.: Cavitation Bubble Trackers. Balkema (1999)

    Google Scholar 

  23. Lindau, O., Lauterborn, W.: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327–348 (2003)

    Article  MATH  Google Scholar 

  24. Menikoff, R., Plor, B.J.: The Riemann Problem for Fluid Flow of Real Materials. Rev. Modern Physics 61 (1989)

    Google Scholar 

  25. Mihatsch, M., Schmidt, S.J., Thalhamer, M., Adams, N.A.: Numerical Prediction of Ero-sive Collapse Events in Unsteady Compressible Cavitating Flows. In: Proc. Marine 2011, International Conference on Computational Methods in Marine Engineering, Barcelona (2011)

    Google Scholar 

  26. Moran, M.J., Shapiro, H.N., Boettner, D.D., Bailey, M.B.: Fundamentals of Engineering Thermodynamics. John Wiley and Sons (2011)

    Google Scholar 

  27. Reisman, G.E., Wang, Y.-C., Brennen, C.E.: Observations of Shock Waves in Cloud Cavitation. Journal of Fluid Mechanics 355 (1998)

    Google Scholar 

  28. Schmidt, S.J., Sezal, I.H., Schnerr, G.H., Thalhamer, M.: Riemann Techniques for the Simulation of Compressible Liquid Flows with Phase-transition at all Mach numbers - Shock and Wave Dynamics in Cavitating 3-D Micro and Macro Systems. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, January 7-10 , Reno, Nevada, USA, AIAA paper 2008-1238 (2008)

    Google Scholar 

  29. Schmidt, S.J., Thalhamer, M., Schnerr, G.H.: Inertia Controlled Instability and Small Scale Structures of Sheet and Cloud Cavitation. In: Proc. 7th CAV 2009 - 7th International Symposium on Cavitation, Ann Arbor, Michigan, USA, August 16- 21, paper 17. CD-ROM publication (2009)

    Google Scholar 

  30. Schmidt, S.J., Mihatsch, M., Thalhamer, M., Adams, N.A.: Assessment of the Prediction Capability of a Thermodynamic Cavitation Model for the Collapse Characteristics of a Vapor-Bubble Cloud. In: Proc. WIMRC Cavitation Forum 2011, e-publication, Warwick, UK, July 4 - 6 (2011)

    Google Scholar 

  31. Schnerr, G.H., Sezal, I.H., Schmidt, S.J.: Numerical Investigation of Three-dimensional Cloud Cavitation with Special Emphasis on Collapse Induced Shock Dynamics. Physics of Fluids 20(4) (2008)

    Google Scholar 

  32. Schrage, R.W.: A Theoretical Study of Interphase Mass Transfer. Columbia University Press (1953)

    Google Scholar 

  33. Shah, Y.T., Pandit, A.B., Moholkar, V.S.: Cavitation Reaction Engineering. Kluwer (1999)

    Google Scholar 

  34. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comp. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tomita, Y., Shima, A.: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535–564 (1986)

    Article  Google Scholar 

  36. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer (1999)

    Google Scholar 

  37. Trevena, D.H.: Cavitation and the Generation of Tension in Liquids. J. Phys. D: Applied Physics 17 (1984)

    Google Scholar 

  38. Whitham, G.B.: Linear and Nonlinear Waves. John Wiley and Sons (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus A. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adams, N.A., Schmidt, S.J. (2013). Shocks in Cavitating Flows. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_8

Download citation

Publish with us

Policies and ethics