Skip to main content

Direct Numerical Simulation of Shock Propagation in Bubbly Liquids

  • Chapter
Bubble Dynamics and Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

Abstract

The presence ofmany compressible bubbles in a liquidmakes the mixture compressible, even when the compressibility of the liquid can be neglected. In classical models of such a compressible mixture a relation between the bubble volume (i.e. the density of the mixture) and the local pressure is usually obtained by solving a Rayleigh-Plesset equation for a single bubble in unbounded quiescent flow. Here we discuss the use of Direct Numerical Simulations (DNS), where every continuum length and time scale are fully resolved, to understand the effect of bubble-flow and bubble-bubble interactions. DNS of multiphase flows have progressed significantly in the last two decades and it is now possible to follow reliably the motion of large number of bubbles for a long time. We examine the state of the art in simulations of bubbly flows in general and outline one specific numerical approach. Results for both the collapse of a single cavitation bubble and the impact of flow on the collapse are reviewed and results for simulations of shock propagation in a domain containing several bubbles are then presented. We conclude by discussing possible future studies and the outlook for DNS of cavitating flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antal, S.P., Lahey, R.T., Flaherty, J.E.: Analysis of phase distribution in fully developed laminar bubbly two-phase flows. Int. J. Multiphase Flow 15, 635–652 (1991)

    Article  Google Scholar 

  2. Azpitarte, O.E., Buscaglia, G.C.: Analytical and numerical evaluation of two-fluid model solutions for laminar fully developed bubbly two-phase flows. Chem. Eng. Sci. 58, 3765–3776 (2003)

    Article  Google Scholar 

  3. van den Berg, T.H., Luther, S., Lathrop, D.P., Lohse, D.: Drag reduction in bubbly taylor-couette turbulence. Phys. Rev. Lett. 94(044501) (2005)

    Google Scholar 

  4. Biswas, S., Esmaeeli, A., Tryggvason, G.: Comparison of results from dns of bubbly flows with a two-fluid model for two-dimensional laminar flows. Int. J. Multiphase Flows 31, 1036–1048 (2005)

    Article  MATH  Google Scholar 

  5. Biswas, S., Tryggvason, G.: The transient buoyancy driven motion of bubbles across a two-dimensional quiescent domain. Int. J. Multiphase Flow 33 (2007)

    Google Scholar 

  6. Blake, J.R., Gibson, D.C.: Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics 19, 99–123 (1987)

    Article  Google Scholar 

  7. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bunner, B., Tryggvason, G.: Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466, 17–52 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Bunner, B., Tryggvason, G.: Dynamics of homogeneous bubbly flows. Part 2. Velocity fluctuations. J. Fluid Mech. 466, 53–84 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Bunner, B., Tryggvason, G.: Effect of bubble deformation on the stability and properties of bubbly flows. J. Fluid Mech. 495, 77–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chapman, R.B., Plesset, M.S.: Nonlinear effects in the collaps of a nearly spherical cavity in a liquid. Trans. ASME, J. Basic Eng. 94, 142 (1972)

    Article  Google Scholar 

  12. Dabiri, S., Sirignano, W.A., Joseph, D.D.: Interaction between a cavitation bubble and shear flow. J. Fluid Mech. 651, 93–116 (2010)

    Article  MATH  Google Scholar 

  13. Deckwer, W.D.: Bubble Column Reactors. Wiley (1992)

    Google Scholar 

  14. Delale, C., Nas, S., Tryggvason, G.: Direct numerical simulations of shock propagation in bubbly liquids. Phys. Fluids 17, 121705 (2005)

    Article  Google Scholar 

  15. Delale, C., Tryggvason, G.: Shock structure in bubbly liquids: Comparison of direct numerical simulations and model equations. Shock Waves 17 (2008), doi:10.1007/s00193-008-0126-1

    Google Scholar 

  16. Dijkhuizen, W., Roghair, I., Annaland, M.V.S., Kuipers, J.: Dns of gas bubbles behaviour using an improved 3d front tracking model–drag force on isolated bubbles and comparison with experiments. Chem. Eng. Sci. 65, 1415–1426 (2010)

    Article  Google Scholar 

  17. Dijkhuizen, W., Roghair, I., Annaland, M.V.S., Kuipers, J.: Dns of gas bubbles behaviour using an improved 3d front tracking model–model development. Chem. Eng. Sci. 65, 1427–1437 (2010)

    Article  Google Scholar 

  18. Esmaeeli, A., Tryggvason, G.: An inverse energy cascade in two-dimensional, low Reynolds number bubbly flows. J. Fluid Mech. 314, 315–330 (1996)

    Article  MATH  Google Scholar 

  19. Esmaeeli, A., Tryggvason, G.: Direct numerical simulations of bubbly flows. Part I. Low Reynolds number arrays. J. Fluid Mech. 377, 313–345 (1998)

    Article  MATH  Google Scholar 

  20. Esmaeeli, A., Tryggvason, G.: Direct numerical simulations of bubbly flows. Part II. Moderate Reynolds number arrays. J. Fluid Mech. 385, 325–358 (1999)

    Article  MATH  Google Scholar 

  21. Furusaki, S., Fan, L.S., Garside, J.: The Expanding World of Chemical Engineering, 2nd edn. Taylor & Francis (2001)

    Google Scholar 

  22. Hao, Y., Prosperetti, A.: A numerical method for three-dimensional gas–liquid flow computations. Journal of Computational Physics 196, 126–144 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluid 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  24. Hua, J., Lou, J.: Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222, 769–795 (2007)

    Article  MATH  Google Scholar 

  25. Ishii, M.: Thermo-fluid dynamic theory of two-phase flows. Eyrolles (1975)

    Google Scholar 

  26. Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jeong, J., Hussain, F.: On the identification of a vortex. Journal of Fluid Mechanics 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kato, H., Miyanaga, M., Yamaguchi, H., Guin, M.M.: Frictional drag reduction by injecting bubbly water into turbulent boundary layer and the effect of plate orientation, pp. 31–38 (1995)

    Google Scholar 

  29. Kodama, Y., Kakugawa, A., Takahashi, T., Nagaya, S., Sugiyama, K.: Microbubbles: Drag reduction and applicability to ships. In: Twenty-Fourth Symposium on Naval Hydrodynamics. Naval Studies Board, NSB (2003), http://books.nap.edu/books/NI000511/html/

  30. Lu, J., Fernandez, A., Tryggvason, G.: The effect of bubbles on the wall shear in a turbulent channel flow. Phys. Fluids 17, 095, 102 (2005)

    Google Scholar 

  31. Lu, J., Tryggvason, G.: Numerical study of turbulent bubbly downflows in a vertical channel. Physics of Fluids 18, 103, 302(2006)

    Google Scholar 

  32. Lu, J., Tryggvason, G.: Effect of bubble size in turbulent bubbly downflow in a vertical channel. Chemical Engineering Science 62(11), 3008–3018 (2007)

    Article  Google Scholar 

  33. Lu, J., Tryggvason, G.: Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Physics of Fluids 20, 040, 701 (2008)

    Google Scholar 

  34. Merkle, C., Deutsch, S.: Drag reduction in liquid boundary layers by gas injection. Progress in Astraunautics and Aeronautics 123, 351–412 (1990)

    Google Scholar 

  35. Mitchell, T.M., Hammitt, F.H.: Asymmetric cavitation bubble collapse. Trans. ASME, J. Fluids Eng. 95, 29–37 (1973)

    Article  Google Scholar 

  36. Nobari, M.R., Jan, Y.J., Tryggvason, G.: Head-on collision of drops–a numerical investigation. Phys. Fluids 8, 29–42 (1996)

    Article  MATH  Google Scholar 

  37. Nobari, M.R., Tryggvason, G.: Numerical simulations of three-dimensional drop collisions. AIAA Journal 34, 750–755 (1996)

    Article  Google Scholar 

  38. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Oweis, G., Van der Hout, I., Iyer, C., Tryggvason, G., Ceccio, S.: Capture and inception of bubbles near line vortices. Physics of Fluids 17, 022, 105 (2005)

    Google Scholar 

  40. Popinet, S., Zaleski, S.: Bubble collapse near a solid boundary: A numerical study of the influence of viscosity. Journal of Fluid Mechanics 464, 137–163 (2002)

    Article  MATH  Google Scholar 

  41. Prosperetti, A., Tryggvason, G.: Computational Methods for Multiphase Flow. Cambridge University Press (2007)

    Google Scholar 

  42. Seo, J.H., Lele, S.K., Tryggvason, G.: Investigation and modeling of bubble-bubble interactions effect in homogeneous bubbly flows. Physics of Fluids 22(063302), 18 pages (2010)

    Google Scholar 

  43. van Sint Annaland, M., Dijkhuizen, W., Deen, N., Kuipers, J.: Numerical simulation of gas bubbles behaviour using a 3D front tracking method. AIChE J. 52, 99–110 (2006)

    Article  Google Scholar 

  44. Takewaki, H., Nishiguchi, A., Yabe, T.: Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. J. Comput. Phys. 61, 261–268 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001)

    Article  MATH  Google Scholar 

  46. Tryggvason, G., Scardovelli, R., Zaleski: Direct Numerical Simulations of Gas-Liquid Multiphase Flow. Cambridge University Press (2011)

    Google Scholar 

  47. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  MATH  Google Scholar 

  48. Yu, P.W., Ceccio, S., Tryggvason, G.: The collapse of a cavitation bubble in shear flows-a numerical study. Phys. Fluids 7, 2608–2616 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretar Tryggvason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tryggvason, G., Dabiri, S. (2013). Direct Numerical Simulation of Shock Propagation in Bubbly Liquids. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_6

Download citation

Publish with us

Policies and ethics