Skip to main content

Shock Propagation in Polydisperse Bubbly Liquids

  • Chapter
Bubble Dynamics and Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

Abstract

We investigate the shock dynamics of liquid flows containing small gas bubbles with numerical simulations based on a continuum bubbly flow model. Particular attention is devoted to the effects of distributed bubble sizes and gas-phase nonlinearity on shock dynamics. Ensemble-averaged conservation laws for polydisperse bubbly flows are closed with a Rayleigh–Plesset-type model for single bubble dynamics. Numerical simulations of one-dimensional shock propagation reveal that phase cancellations in the oscillations of different-sized bubbles can lead to an apparent damping of the averaged shock dynamics. Experimentally, we study the propagation of waves in a deformable tube filled with a bubbly liquid. The model is extended to quasi-one-dimensional cases. This leads to steady shock relations that account for the compressibility associated with tube deformation, bubbles and host liquid. A comparison between the theory and the water-hammer experiments suggests that the gas-phase nonlinearity plays an essential role in the propagation of shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delale, C.F., Nas, S., Tryggvason, G.: Direct numerical simulations of shock propagation in bubbly liquids. Phys. Fluids 17, Art. No. 121705 (2005)

    Google Scholar 

  2. Delale, C.F., Tryggvason, G.: Shock structure in bubbly liquids: comparison of direct numerical simulations and model equations. Shock Waves 17, 433–440 (2008)

    Article  Google Scholar 

  3. Lu, T., Samulyak, R., Glimm, J.: Direct numerical simulation of bubbly flows and application to cavitation mitigation. J. Fluids Eng. 129, 595–604 (2007)

    Article  Google Scholar 

  4. Seo, J.H., Lele, S.K., Tryggvason, G.: Investigation and modeling of bubble-bubble interaction effect in homogeneous bubbly flows. Phys. Fluids 22, Art. No. 063302 (2010)

    Google Scholar 

  5. Arndt, R.E.A.: Cavitation in fluid machinery and hydraulic structures. Annu. Rev. Fluid Mech. 13, 273–328 (1981)

    Article  Google Scholar 

  6. Brennen, C.E.: Hydrodynamics of Pumps. Oxford University Press (1994)

    Google Scholar 

  7. Cole, R.H.: Underwater Explosions. Princeton University Press (1948)

    Google Scholar 

  8. Kedrinskii, V.K.: Hydrodynamics of Explosion. Springer (2005)

    Google Scholar 

  9. Bailey, M.R., McAteer, J.A., Pishchalnikov, Y.A., Hamilton, M.F., Colonius, T.: Progress in lithotripsy research. Acoust. Today 18, 18–29 (2006)

    Article  Google Scholar 

  10. Krimmel, J., Colonius, T., Tanguay, M.: Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters. Urol. Res. 38, 505–518 (2010)

    Article  Google Scholar 

  11. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press (1995)

    Google Scholar 

  12. Brennen, C.E.: Fundamentals of Multiphase Flow. Cambridge University Press (2005)

    Google Scholar 

  13. Commander, K.W., Prosperetti, A.: Linear pressure waves in bubbly liquids: Comparison between theory and experiments. J. Acoust. Soc. Am. 85, 732–746 (1989)

    Article  Google Scholar 

  14. Nigmatulin, R.I.: Mathematical modelling of bubbly liquid motion and hydrodynamical effects in wave propagation phenomenon. Appl. Sci. Res. 38, 267–289 (1982)

    Article  MATH  Google Scholar 

  15. van Wijngaarden, L.: One-dimensional flow of liquids containing small gas bubbles. Annu. Rev. Fluid Mech. 4, 369–396 (1972)

    Article  Google Scholar 

  16. Campbell, I.J., Pitcher, A.S.: Shock waves in a liquid containing gas bubbles. Proc. R Soc. Lond. A 243, 534–545 (1958)

    Article  MATH  Google Scholar 

  17. Beylich, A.E., Gülhan, A.: On the structure of nonlinear waves in liquids with gas bubbles. Phys. Fluids A 2, 1412–1428 (1990)

    Article  MATH  Google Scholar 

  18. Kameda, M., Matsumoto, Y.: Shock waves in a liquid containing small gas bubbles. Phys. Fluids 8, 322–335 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kameda, M., Shimaura, N., Higashino, F., Matsumoto, Y.: Shock waves in a uniform bubbly flow. Phys. Fluids 10, 2661–2668 (1998)

    Article  Google Scholar 

  20. Noordzij, L., van Wijngaarden, L.: Relaxation effects, caused by relative motion, on shock waves in gas-bubble/liquid mixtures. J. Fluid Mech. 66, 115–143 (1974)

    Article  MATH  Google Scholar 

  21. Tan, M.J., Bankoff, S.G.: Strong shock waves propagating through a bubbly mixture. Exp. Fluids 2, 159–165 (1984)

    Article  Google Scholar 

  22. Nigmatulin, R.I., Khabeev, N.S., Hai, Z.N.: Waves in liquids with vapour bubbles. J. Fluid Mech. 186, 85–117 (1988)

    Article  MATH  Google Scholar 

  23. Tan, M.J., Bankoff, S.G.: Propagation of pressure waves in bubbly mixtures. Phys. Fluids 27, 1362–1369 (1984)

    Article  MATH  Google Scholar 

  24. Watanabe, M., Prosperetti, A.: Shock waves in dilute bubbly liquids. J. Fluid Mech. 274, 349–381 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brennen, C.E.: Fission of collapsing cavitation bubbles. J. Fluid Mech. 472, 153–166 (2002)

    Article  MATH  Google Scholar 

  26. Shepherd, J.E., Inaba, K.: Shock loading and failure of fluid-filled tubular structures. In: Shukla, A., Ravichandran, G., Rajapakse, Y.D.S. (eds.) Dynamic Failure of Materials and Structures, pp. 153–190. Springer (2010)

    Google Scholar 

  27. Tijsseling, A.S.: Fluid-structure interaction in liquid-filled pipe systems: A review. J. Fluids Struct. 10, 109–146 (1996)

    Article  Google Scholar 

  28. Wylie, E.B., Streeter, V.L.: Fluid Transients in Systems. Prentice Hall (1993)

    Google Scholar 

  29. Joukowsky, N.E.: Memoirs of the Imperial Academy Society of St. Petersburg. Proc. Amer. Water Works Assoc. 24, 341–424 (1898)

    Google Scholar 

  30. Korteweg, D.J.: Ber die Fortpflanzungsgeschwindigkeit des Shalles in elastischen Röhren. Annalen der Physik und Chemie. 5, 525–542 (1878)

    MATH  Google Scholar 

  31. Kobori, T., Yokoyama, S., Miyashiro, H.: Propagation velocity of pressure wave in pipe line. Hitachi Hyoron. 37, 33–37 (1955)

    Google Scholar 

  32. Dashpande, V.S., Heaver, A., Fleck, N.A.: An underwater shock simulator. Proc. R. Soc. A 462, 1021–1041 (2006)

    Article  Google Scholar 

  33. Espinosa, H.D., Lee, S., Moldovan, N.: A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading. Exp. Mech. 46, 805–824 (2006)

    Article  Google Scholar 

  34. Inaba, K., Shepherd, J.E.: Flexural waves in fluid-filled tubes subject to axial impact. J. Pressure Vessel Technol. 132, Art. No. 021302 (2010)

    Google Scholar 

  35. Ando, K., Sanada, T., Inaba, K., Damazo, J.S., Shepherd, J.E., Colonius, T., Brennen, C.E.: Shock propagation through a bubbly liquid in a deformable tube. J. Fluid Mech. 671, 339–363 (2011)

    Article  MATH  Google Scholar 

  36. Ando, K., Colonius, T., Brennen, C.E.: Numerical simulation of shock propagation in a polydisperse bubbly liquid. Int. J. Multiphase Flow 37, 596–608 (2011)

    Article  Google Scholar 

  37. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer (2006)

    Google Scholar 

  38. Zhang, Z.D., Prosperetti, A.: Ensemble-averaged equations for bubbly flows. Phys. Fluids 6, 2956–2970 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Batchelor, G.K.: The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545–570 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  40. Biesheuvel, A., van Wijngaarden, L.: Two-phase flow equations for a dilute dispersion of gas bubbles in liquid. J. Fluid Mech. 148, 301–318 (1984)

    Article  MATH  Google Scholar 

  41. Nigmatulin, R.I.: Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int. J. Heat Mass Transfer 5, 353–385 (1979)

    MATH  Google Scholar 

  42. Prosperetti, A.: Fundamental acoustic properties of bubbly liquids. In: Levy, M., Bass, H.E., Stern, R.R. (eds.) Handbook of Elastic Properties of Solids, Liquids, and Gases. Elastic Properties of Fluids: Liquids and Gases, vol. 4, pp. 183–205. Academic (2001)

    Google Scholar 

  43. Zhang, Z.D., Prosperetti, A.: Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185–219 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Z.D., Prosperetti, A.: Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Int. J. Multiphase Flow 23, 425–453 (1997)

    Article  MATH  Google Scholar 

  45. Caflisch, R.E., Miksis, M.J., Papanicolaou, G.C., Ting, L.: Wave propagation in bubbly liquids at finite volume fraction. J. Fluid Mech. 160, 1–14 (1985)

    Article  MATH  Google Scholar 

  46. Fuster, D., Colonius, T.: Modelling bubble clusters in compressible liquids. J. Fluid Mech. 688, 352–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Thompson, P.A.: Compressible Fluid Dynamics. McGraw-Hill (1972)

    Google Scholar 

  48. Van Wijngaarden, L.: On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33, 465–474 (1968)

    Article  MATH  Google Scholar 

  49. Epstein, P.S., Plesset, M.S.: On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505–1509 (1950)

    Article  Google Scholar 

  50. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  Google Scholar 

  51. Colonius, T., Hagmeijer, J., Ando, K., Brennen, C.E.: Statistical equilibrium of bubble oscillations in dilute bubbly flows. Phys. Fluids 20, Art. No. 040902 (2008)

    Google Scholar 

  52. Delale, C.F., Tunç, M.: A bubble fission model for collapsing cavitation bubbles. Phys. Fluids 16, 4200–4203 (2004)

    Article  Google Scholar 

  53. Johnsen, E., Colonius, T.: Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231–262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ranjan, D., Oakley, J., Bonazza, R.: Shock-bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  Google Scholar 

  55. Gilmore, F.R.: The collapse and growth of a spherical bubble in a viscous compressible liquid. California Institute of Technology. Hydrodynamics Laboratory Report No. 26–4 (1952)

    Google Scholar 

  56. Plesset, M.S.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 228–231 (1949)

    Google Scholar 

  57. Rayleigh, L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 94–98 (1917)

    Article  MATH  Google Scholar 

  58. Caflisch, R.E., Miksis, M.J., Papanicolaou, G.C., Ting, L.: Effective equations for wave propagation in bubbly liquids. J. Fluid Mech. 153, 259–273 (1985)

    Article  MATH  Google Scholar 

  59. Takahira, H.: A remark on the pressure terms in the Rayleigh-Plesset equation for cavitating flows. Trans. Jpn. Soc. Mech. Eng. B 70, 617–622 (2004)

    Article  Google Scholar 

  60. Hao, Y., Prosperetti, A.: The dynamics of vapor bubbles in acoustic pressure fields. Phys. Fluids 11, 2008–2019 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  61. Preston, A., Colonius, T., Brennen, C.E.: Toward efficient computation of heat and mass transfer effects in the continuum model for bubbly cavitating flows. In: Proceedings of the Fourth International Symposium on Cavitation (2001)

    Google Scholar 

  62. Lin, H., Storey, B.D., Szeri, A.J.: Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh–Plesset equation. J. Fluid Mech. 452, 145–162 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  63. Prosperetti, A., Crum, L.A., Commander, K.W.: Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83, 502–514 (1988)

    Article  Google Scholar 

  64. Nigmatulin, R.I., Khabeev, N.S., Nagiev, F.B.: Dynamics, heat and mass transfer of vapour-gas bubbles in a liquid. Int. J. Heat Mass Transfer 24, 1033–1044 (1981)

    Article  MATH  Google Scholar 

  65. Fujikawa, S., Akamatsu, T.: Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481–512 (1980)

    Article  MATH  Google Scholar 

  66. Preston, A.T., Colonius, T., Brennen, C.E.: A reduced-order model of diffusive effects on the dynamics of bubbles. Phys. Fluids 19, Art. No. 123302 (2007)

    Google Scholar 

  67. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser Verlag (1992)

    Google Scholar 

  68. Carstensen, E.L., Foldy, L.L.: Propagation of sound through a liquid containing bubbles. J. Acoust. Soc. Am. 19, 481–501 (1947)

    Article  Google Scholar 

  69. Foldy, L.L.: The muntiple scattering of waves. Phys. Rev. 67, 107–119 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  70. Prosperetti, A.: Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 61, 17–27 (1977)

    Article  Google Scholar 

  71. Ainslie, M.A., Leighton, T.G.: Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. J. Acoust. Soc. Am. 130, 3184–3208 (2011)

    Article  Google Scholar 

  72. Minnaert, M.: On musical air-bubbles and sounds of running water. Phil. Mag. 16, 235–248 (1933)

    Google Scholar 

  73. Waterman, P.C., Truell, R.: Multiple scattering of waves. J. Math. Phys. 2, 512–537 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  74. Feuillade, C.: The attenuation and dispersion of sound in water containing multiply interacting air bubbles. J. Acoust. Soc. Am. 99, 3412–3430 (1996)

    Article  Google Scholar 

  75. Ando, K., Colonius, T., Brennen, C.E.: Improvement of acoustic theory of ultrasonic waves in dilute bubbly liquids. J. Acoust. Soc. Am. 126, EL69–EL74 (2009)

    Google Scholar 

  76. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill (1978)

    Google Scholar 

  77. Smereka, P.: A Vlasov equation for pressure wave propagation in bubbly fluids. J. Fluid Mech. 454, 287–325 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  78. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  79. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA Langley Research Center ICASE Report No. 97–65 (1997)

    Google Scholar 

  80. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  81. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  82. Qiu, J., Shu, C.-W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  83. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer (2009)

    Google Scholar 

  84. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Article  MATH  Google Scholar 

  85. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  86. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Compt. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  87. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  88. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002)

    Google Scholar 

  89. Tanguay, M.: Computation of bubbly cavitating flow in shock wave lithotripsy. PhD Thesis. California Institute of Technology (2004), http://thesis.library.caltech.edu/2188/

  90. Colonius, T., d’Auria, F., Brennen, C.E.: Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall. Phys. Fluids 12, 2752–2761 (2000)

    Article  Google Scholar 

  91. Preston, A.T., Colonius, T., Brennen, C.E.: A numerical investigation of unsteady bubbly cavitating nozzle flows. Phys. Fluids 14, 300–311 (2002)

    Article  Google Scholar 

  92. Skalak, R.: An extension of the theory of water hammer. Trans. ASME 78, 105–116 (1956)

    Google Scholar 

  93. Tijsseling, A.S., Lambert, M.F., Simpson, A.R., Stephens, M.L., Vítkovský, J.P., Bergant, A.: Skalak’s extended theory of water hammer. J. Sound Vib. 310, 718–728 (2008)

    Article  Google Scholar 

  94. Nagayama, K., Mori, Y., Shimada, K.: Shock Hugoniot compression curve for water up to 1 GPa by using a compressed gas gun. J. Appl. Phys. 91, 476–482 (2002)

    Article  Google Scholar 

  95. Bergant, A.: Developments in unsteady pipe flow friction modeling. J. Hydraul. Res. 39, 249–257 (2001)

    Article  Google Scholar 

  96. Suo, L., Wylie, E.B.: Complex wavespeed and hydraulic transients in viscoelastic pipes. J. Fluids Eng. 112, 496–500 (1990)

    Article  Google Scholar 

  97. Leighton, T.G.: The Acoustic Bubble. Academic Press (1994)

    Google Scholar 

  98. Matsumoto, Y., Yoshizawa, S.: Behaviour of a bubble cluster in an ultrasound field. Int. J. Numer. Meth. Fluids 47, 591–601 (2005)

    Article  MATH  Google Scholar 

  99. Shimada, M., Matsumoto, Y., Kobayashi, T.: Influence of the nuclei size distribution on the collapsing behavior of the cloud cavitation. JSME Int. J. Ser. B 43, 380–385 (2000)

    Article  Google Scholar 

  100. Wang, Y.-C., Brennen, C.E.: Numerical computation of shock waves in a spherical cloud of cavitation bubbles. J. Fluids Eng. 121, 872–880 (1999)

    Article  Google Scholar 

  101. Wang, Y.-C.: Effects of nuclei size distribution on the dynamics of a spherical cloud of cavitation bubbles. J. Fluids Eng. 121, 881–886 (1999)

    Article  Google Scholar 

  102. Delale, C.F., Schnerr, G.H., Sauer, J.: Quasi-one-dimensional steady-state cavitating nozzle flows. J. Fluid Mech. 427, 167–204 (2001)

    Article  MATH  Google Scholar 

  103. Delale, C.F.: Thermal damping in cavitating nozzle flows. J. Fluids Eng. 124, 969–976 (2002)

    Article  Google Scholar 

  104. Delale, C.F., Okita, K., Matsumoto, Y.: Steady-state cavitating nozzle flows with nucleation. J. Fluids Eng. 127, 770–777 (2005)

    Article  Google Scholar 

  105. Wang, Y.-C., Brennen, C.E.: One-dimensional bubbly cavitating flows through a converging-diverging nozzle. J. Fluids Eng. 120, 166–170 (1998)

    Article  Google Scholar 

  106. Wang, Y.-C.: Stability analysis of one-dimensional steady cavitating nozzle flows with bubble size distribution. J. Fluids Eng. 122, 425–430 (2000)

    Article  Google Scholar 

  107. An, Y.: Formulation of multibubble cavitation. Phys. Rev. E 83, Art. No. 066313 (2011)

    Google Scholar 

  108. Bremond, N., Arora, M., Ohl, C.D., Lohse, D.: Controlled muntibubble surface cavitation. Phys. Rev. Lett. 96, Art. No. 224501 (2006)

    Google Scholar 

  109. Ilinskii, Y.A., Hamilton, M.F., Zabolotskaya, E.A.: Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J. Acoust. Soc. Am. 121, 786–795 (2007)

    Article  Google Scholar 

  110. Ida, M.: Bubble-bubble interaction: A potential source of cavitation noise. Phys. Rev. E 79, Art. No. 016307 (2009)

    Google Scholar 

  111. Ando, K.: Effects of polydispersity in bubbly flows. PhD Thesis. California Institute of Technology (2010), http://thesis.library.caltech.edu/5859/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ando, K., Colonius, T., Brennen, C.E. (2013). Shock Propagation in Polydisperse Bubbly Liquids. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_5

Download citation

Publish with us

Policies and ethics