Skip to main content

Pulsating Bubbles Near Boundaries

  • Chapter
Book cover Bubble Dynamics and Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

Abstract

The highly nonlinear behaviour of vigorously pulsating non-spherical bubbles near rigid and compliant boundaries, free surfaces and fluid-fluid interfaces has a wide application, ranging from problems in hydraulic and naval engineering, turbopumps in rockets, seismic airguns in marine exploration, underwater explosions, surface cleaning, mixing processes at interfaces and sonochemistry through to a diversity of uses in therapeutic medicine and surgery including shockwave lithitropsy, cell ablation in cancers, sonoporation and drug delivery using contrastagent bubbles. In this chapter the generic features of the bubble dynamics are presented through an appreciation of the fundamental physics associated with the phenomenon, the latest analytical and computational developments together with the available knowledge provided by experimentation. The study for incompressible and weakly compressible models is presented with a view to providing a better understanding of cavitation phenomena such that improved engineering and industrial design may be an outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin, B.T., Ellis, A.T.: The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos. Trans. R. Soc. London Ser. A 260, 221–240 (1966)

    Article  Google Scholar 

  2. Best, J.P.: The dynamics of underwater explosions. PhD Thesis. University of Wollongong (1991)

    Google Scholar 

  3. Best, J.P.: The formation of toroidal bubbles upon collapse of transient cavities. J. Fluid Mech. 251, 79–107 (1993)

    Article  MATH  Google Scholar 

  4. Best, J.P.: The rebound of toroidal bubbles. Fluid Mechanics and its Applications 23, 405–412 (1994)

    Article  Google Scholar 

  5. Best, J.P., Blake, J.R.: An estimate of the Kelvin impulse of a transient cavity. J. Fluid Mech. 261, 75–93 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Best, J.P., Kucera, A.: A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137–154 (1992)

    Article  MATH  Google Scholar 

  7. Blake, J.R.: The Kelvin impulse: Application to cavitation bubble dynamics. J. Austr. Math. Soc. 30, 127–146 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blake, J.R., Boulton-Stone, J.M., Thomas, N.H.: Bubble Dynamics and Interface Phenomena. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  9. Blake, J.R., Gibson, D.C.: Growth and collapse of a vapour bubble near a free surface. J. Fluid Mech. 111, 123–140 (1981)

    Article  Google Scholar 

  10. Blake, J.R., Gibson, D.C.: Cavitation bubbles near boundaries. Ann. Rev. Fluid Mech. 19, 99–123 (1987)

    Article  Google Scholar 

  11. Blake, J.R., Leppinen, D.M.: Bubble dynamics revisited: There’s lots of time in a second (in preparation)

    Google Scholar 

  12. Blake, J.R., Robinson, P.B., Shima, A., Tomita, Y.: Interaction of two cavitation bubbles with a rigid boundary. J. Fluid Mech. 255, 707–721 (1993)

    Article  Google Scholar 

  13. Blake, J.R., Taib, B.B., Doherty, G.: Transient cavities near boundaries. Part 1. Rigid boundaries. J. Fluid Mech. 170, 479–497 (1986)

    Article  MATH  Google Scholar 

  14. Blake, J.R., Taib, B.B., Doherty, G.: Transient cavities near boundaries. Part 2. Free Surface. J. Fluid Mech. 181, 197–212 (1986)

    Article  Google Scholar 

  15. Boulton-Stone, J.M.: The effect of surfactant on bursting gas-bubbles. J. Fluid Mech. 302, 231–257 (1995)

    Article  MATH  Google Scholar 

  16. Boulton-Stone, J.M., Blake, J.R.: Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437–466 (1993)

    Article  MATH  Google Scholar 

  17. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford Engineering Sciences Series, vol. 44. Oxford University Press, Oxford (1995)

    Google Scholar 

  18. Brenner, M.D., Hilgenfeldt, S., Lohse, D.: Single bubble sonoluminescence. Rev. Mod. Phys. 74, 425–484 (2002)

    Article  Google Scholar 

  19. Brujan, E.A., Keen, G.S., Vogel, A., Blake, J.R.: The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 85–92 (2002)

    Article  Google Scholar 

  20. Calvisi, M.L., Landau, O., Blake, J.R., Szeri, A.J.: Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys. Fluids 19, 047101 (2007)

    Article  Google Scholar 

  21. Chahine, G.L.: Interaction between an oscillating bubble and a free surface. Trans. ASME, J. Fluids Eng. 99, 709–715 (1977)

    Article  Google Scholar 

  22. Chahine, G.L.: Experimental and asymptotic study of non-spherical bubble collapse. Appl. Sci. Res. 38, 187–198 (1982)

    Article  Google Scholar 

  23. Chahine, G.L., Bovis, A.: Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface. Springer Series in Electrophysics, vol. 4, pp. 23–29 (1980)

    Google Scholar 

  24. Cole, R.H.: Underwater explosions. Princeton University Press, Princeton (1945)

    Google Scholar 

  25. Curtiss, G.A.: Non-linear, non-spherical bubble dynamics near a two fluid interface. PhD Thesis, University of Birmingham (2009)

    Google Scholar 

  26. Epstein, D., Keller, J.B.: Expansion and contraction of planar, cylindrical and sperical underwater gas bubbles. J. Acoust. Soc. Amer. 52, 977–980 (1971)

    Google Scholar 

  27. Feng, Z.C., Leal, L.G.: Nonlinear bubble dynamics. Ann. Rev. Fluid Mech. 29, 201–243 (1997)

    Article  MathSciNet  Google Scholar 

  28. Gerold, B., Kotopoulis, S., McDougall, C., McGloin, D., Postema, M., Prentice, P.: Laser-nucleated acoustic cavitation in focussed ultrasound. Rev. Sci. Intr. 82, 044902 (2011)

    Article  Google Scholar 

  29. Gibson, D.C.: Cavitation adjacent to plane boundaries. In: Proc. Aust. Conf. Hydraul. and Fluid Mech., vol. 3, pp. 210–214 (1968)

    Google Scholar 

  30. Gibson, D.C.: Cavitation adjacent to plane boundaries. In: Proc. 3rd Australian Conf. on Hydraulics and Fluid Mech., pp. 210–214 (1968)

    Google Scholar 

  31. Guerri, L., Lucca, G., Prosperetti, A.: A numerical method for the dynamics of non-spherical cavitation bubbles. In: Proceedings of the 2nd International Colloquium on Drops and Bubbles, pp. 175–181 (1981)

    Google Scholar 

  32. Herring, C.: The theory of the pulsations of the gas bubbles produced by an underwater explosion. Nat. Defence Res. Comm. Report (1941)

    Google Scholar 

  33. Keller, J.B., Kolodner, I.I.: Damping of underwater explosion bubble oscillations. J. Applied Phys. 27(10), 1152–1161 (1956)

    Article  Google Scholar 

  34. Keller, J.B., Miksis, M.: Bubble oscillations of large-amplitude. J. Acoust. Soc. Amer. 68, 628–633 (1980)

    Article  MATH  Google Scholar 

  35. Kucera, A., Blake, J.R.: Approximate methods for modeling cavitation bubbles near boundaries. Bull. Austr. Math. Soc. 41(1), 1–44 (1990)

    Article  MathSciNet  Google Scholar 

  36. Kurz, T., Kroeninger, D., Geisler, R., Lauterborn, W.: Optical cavitation in an ultrasonic field. Phys. Rev. E 74, 066307 (2006)

    Article  Google Scholar 

  37. Lauterborn, W.: Cavitation bubble dynamics – new tools for an intricate problem. Appl. Sci. Res. 38, 165–178 (1982)

    Article  Google Scholar 

  38. Lauterborn, W., Kurz, T.: The physics of bubble oscillations. Rep. Prog. Phys. 73, 106501 (2010)

    Article  Google Scholar 

  39. Lenoir, M.: Calcul numérique de l’implosion d’une bulle de cavitation au voisonage d’une paroi ou d’une surface libre. J. Méchanique 15, 725–751 (1976)

    MathSciNet  MATH  Google Scholar 

  40. Leppinen, D.M., Curtiss, G.A., Wang, Q.X., Blake, J.R.: Bubble behaviour near a two fluid interface. In: WIMRC 3rd International Cavitation Forum. University of Warwick (2011)

    Google Scholar 

  41. Lezzi, A., Prosperetti, A.: Bubble dynamics in a compressible liquid. Part. 2. Second-order theory. J. Fluid Mech. 185, 289–321 (1987)

    Article  Google Scholar 

  42. Lundgren, T.S., Mansour, N.N.: Vortex ring bubbles. J. Fluid Mech. 224, 177–196 (1991)

    Article  MATH  Google Scholar 

  43. Mettin, R., Doinikov, A.A.: Translational instability of a spherical bubble in a standing ultrasound wave. Appl. Acoust. 70, 1330–1339 (2009)

    Article  Google Scholar 

  44. Osher, S., Fedkiw, R.P.: Level set methods: An overview and some recent results. J. Comp. Phys. 169, 463–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Osher, S., Sethian, J.A.: Fronts propogating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pearson, A.: Hydrodynamics of jet impact in a collapsing bubble. PhD Thesis, University of Birmingham (2003)

    Google Scholar 

  47. Pearson, A., Blake, J.R., Otto, S.R.: Jets in bubbles. J. Engng. Math. 48, 391–412 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Plesset, M.S.: On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25, 96–98 (1956)

    Article  MathSciNet  Google Scholar 

  49. Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283–290 (1971)

    Article  Google Scholar 

  50. Plesset, M.S., Mitchell, T.P.: On the stability of the spherical shape of a vapor cavity in a liquid. Quart. Appl. Math. 13, 419–430 (1956)

    MathSciNet  MATH  Google Scholar 

  51. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9, 145–185 (1977)

    Article  Google Scholar 

  52. Popinet, S., Zaleski, S.: Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137–163 (2002)

    Article  MATH  Google Scholar 

  53. Prosperetti, A., Lezzi, A.: Bubble dynamics in a compressible liquid. Part. 1. First-order theory. J. Fluid Mech. 168, 457–478 (1986)

    Article  MATH  Google Scholar 

  54. Putterman, S.J., Weninger, K.R.: Sonoluminescence: How bubbles turn sound into light. Ann. Rev. Fluid Mech. 32, 445–476 (2000)

    Article  Google Scholar 

  55. Robinson, P.B., Blake, J.R., Kodama, T., Shima, A., Tomita, Y.: Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89, 8225–8237 (2001)

    Article  Google Scholar 

  56. Sussman, M., Smereka, P.: Axisymmetric free boundary problems. J. Fluid Mech. 341, 269–294 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tomita, T., Robinson, P.B., Tong, R.P., Blake, J.R.: Growth and collapse of cavitation bubbles near a curved rigid boundary, J. Fluid Mech. 466, 259–283 (2002)

    Article  MATH  Google Scholar 

  58. Tong, R.P., Schiffers, W.P., Shaw, S.J., Blake, J.R., Emmony, D.C.: The rôle of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech. 380, 339–361 (1999)

    Article  MATH  Google Scholar 

  59. van Wijngaarden, L.: Mechanics and Physics of Bubbles in Liquids. Appl. Sci. Res. 38 (1982)

    Google Scholar 

  60. Vogel, A., Lauterborn, W., Timm, R.: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299–338 (1989)

    Article  Google Scholar 

  61. Wang, Q.X.: Numerical modelling of violent bubble motion. Phys. Fluids 16, 1610–1619 (2004)

    Article  Google Scholar 

  62. Wang, Q.X., Blake, J.R.: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191–224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, Q.X., Blake, J.R.: Non-spherical bubble dynamics in a compressible liquid. Part 2. Standing Acoustic Wave. J. Fluid Mech. 679, 559–581 (2010)

    Article  MathSciNet  Google Scholar 

  64. Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y.: Strong interaction between buoyancy bubble and free surface. Theoret. and Comput. Fluid Dynamics 8, 73–88 (1996)

    Article  MATH  Google Scholar 

  65. Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y.: Nonlinear interaction between gas bubble and free surface. Computers & Fluids 25(7), 607–628 (1996)

    Article  MATH  Google Scholar 

  66. Wang, Q.X., Yeo, K.S., Khoo, B.C., Lam, K.Y.: Vortex ring modelling of toroidal bubbles. Theo. Comp. Fluid Dyn. 19, 1–15 (2005)

    Google Scholar 

  67. Zhang, S., Duncan, J.H.: On the non-spherical collapse and rebound of a cavitation bubble. Phys. Fluids 6, 2352–2362 (1994)

    Article  MATH  Google Scholar 

  68. Zhang, S., Duncan, J.H., Chahine, G.L.: The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147–181 (1993)

    Article  MATH  Google Scholar 

  69. Zhang, P., Lin, H., Xi, X., Zhu, S., Bhogte, E.S.: Shock wave-inertial microbubble interaction: Methodology, physical characterization and bias effect study. J. Acoust. Soc. Amer. 105, 1997–2009 (1999)

    Article  Google Scholar 

  70. Zhang, Y.L., Yeo, K.S., Khoo, B.C., Wang, C.: 3D Jet impact and toroidal bubbles. J. Comp. Phys. 166, 336–360 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Leppinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leppinen, D.M., Wang, Q.X., Blake, J.R. (2013). Pulsating Bubbles Near Boundaries. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_2

Download citation

Publish with us

Policies and ethics