Skip to main content

Sterilization of Ships’ Ballast Water

  • Chapter
Bubble Dynamics and Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

Abstract

In this chapter, applied research on microbubble dynamics induced by shock waves is presented for the sterilization treatment of marine bacteria contained in ships’ ballast water. Destruction of the marine ecosystem caused by sea creatures carried in ships’ ballast water to different seas is a serious global issue in the field of maritime sciences. Therefore, we propose a new sterilization technique using shock pressure and microbubbles to develop more secure and environmentally friendly treatment methods for ships’ ballast water. We present our research and the problems that need to be solved using prospective approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cariton, J.T., Geller, J.B.: Ecological roulette: the global transport of nonindigenous marine organisms. Science 261(5117), 78–82 (1993)

    Article  Google Scholar 

  2. McCarthy, S.A., Khambaty, F.M.: International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Appl. Environ. Microbiol. 60(7), 2597–2601 (1994)

    Google Scholar 

  3. Ruiz, G.M., Rawlings, T.K., Dobbs, F.C., Drake, L.A., Mullady, T., Huq, A., Colwell, R.R.: Global Spread of Microorganisms by Ships. Nature 408(6808), 49–50 (2000)

    Article  Google Scholar 

  4. Mimura, H., Katakura, R., Ishida, H.: Changes of microbial populations in a ship’s ballast water and sediments on a voyage from Japan to Qatar. Mar. Poll. Bull. 50(7), 751–757 (2005)

    Article  Google Scholar 

  5. Kozai, K., Ishida, H., Okamoto, K., Fukuyo, Y.: Feasibility study of ocean color remote sensing for detecting ballast water. Advances in Space Research 37(4), 787–792 (2006)

    Article  Google Scholar 

  6. Tomaru, A., Kawachi, M., Demura, M., Fukuyo, Y.: Denaturing gradient gel electrophoresis shows that bacterial communities change with mid-ocean ballast water exchange. Mar. Pollut. Bull. 60(2), 299–302 (2010)

    Article  Google Scholar 

  7. Lovell, S.J., Drake, L.A.: Tiny stowaways: analyzing the economic benefits of a U.S. Environmental Protection Agency permit regulating ballast water discharges. Environ. Manage. 43(3), 546–555 (2009)

    Article  Google Scholar 

  8. Roberts, L.: Zebra Mussel Invasion Threatens U.S. Waters: Damage estimates soar into the billions for the zebra mussel, just one of many invaders entering U.S. waters via ballast water. Science 249(4975), 1370–1372 (1990)

    Article  Google Scholar 

  9. Pimentel, D.: Aquatic nuisance species in the New York State Canal and Hudson River systems and the Great Lakes Basin: an economic and environmental assessment. Environ. Manage. 35(5), 692–702 (2005)

    Article  MathSciNet  Google Scholar 

  10. International Maritime Organization, http://www.imo.org/OurWork/Environment/BallastWaterManagement/Pages/Default.aspx#3 (cited November 1, 2011)

  11. Silval, P.C., Woodfield, R.A., Cohen, A.N., Harris, L.H., Goddard, J.H.R.: First Report of the Asian kelp Undaria pinnatifida in the Northeastern Pacific Ocean. Biological Invasions 4(3), 333–338 (2002)

    Article  Google Scholar 

  12. de Lafontaine, Y., Despatie, S.P., Veilleux, E., Wiley, C.: Onboard ship evaluation of the effectiveness and the potential environmental effects of PERACLEAN Ocean for ballast water treatment in very cold conditions. Environ. Toxicol. 24(1), 49–65 (2009)

    Article  Google Scholar 

  13. Smit, M.G., Ebbens, E., Jak, R.G., Huijbregtst, M.A.: Time and concentration dependency in the potentially affected fraction of species: the case of hydrogen peroxide treatment of ballast water. Environ. Toxicol. Chem. 27(3), 746–753 (2008)

    Article  Google Scholar 

  14. Nanayakkara, K.G., Zheng, Y.M., Alam, A.K., Zou, S., Chen, J.P.: Electrochemical disinfection for ballast water management: Technology development and risk assessment. Mar. Pollut. Bull. 63(5-12), 119–123 (2011)

    Article  Google Scholar 

  15. Perrins, J.C., Cordell, J.R., Ferm, N.C., Grocock, J.L., Herwig, R.P.: Mesocosm experiments for evaluating the biological efficacy of ozone treatment of marine ballast water. Mar. Pollut. Bull. 52(12), 1756–1767 (2006)

    Article  Google Scholar 

  16. Wright, D.A., Gensemer, R.W., Mitchelmore, C.L., Stubblefield, W.A., van Genderen, E., Dawson, R., Orano-Dawson, C.E., Bearr, J.S., Mueller, R.A., Cooper, W.J.: Shipboard trials of an ozone-based ballast water treatment system. Mar. Pollut. Bull. 60(9), 1571–1583 (2010)

    Article  Google Scholar 

  17. Hess-Erga, O.K., Blomvågnes-Bakke, B., Vadstein, O.: Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment. Water Res. 44(18), 5439–5449 (2010)

    Article  Google Scholar 

  18. Jones, A.C., Gensemer, R.W., Stubblefield, W.A., Van Genderen, E., Dethloff, G.M., Cooper, W.J.: Toxicity of ozonated seawater to marine organisms. Environ. Toxicol. Chem. 25(10), 2683–2691 (2006)

    Article  Google Scholar 

  19. Tamburri, M.N., Wasson, K., Matsuda, M.: Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion. Biological Conservation 103, 331–341 (2002)

    Article  Google Scholar 

  20. Quilez-Badia, G., McCollin, T., Josefsen, K.D., Vourdachas, A., Gill, M.E., Mesbahi, E., Frid, C.L.: On board short-time high temperature heat treatment of ballast water: a field trial under operational conditions. Mar. Pollut. Bull. 56(1), 127–135 (2008)

    Article  Google Scholar 

  21. Boldor, D., Balasubramanian, S., Purohit, S., Salvi, D., Gutierrez-Wing, M.T., Rusch, K.A., Sabliov, C.M.: A continuous microwave system for prevention of invasive species during de-ballasting operation – death kinetics. J. Microw. Power Electromagn. Energy 42(3), 61–78 (2008)

    Google Scholar 

  22. Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N., Burkholder, J.M.: Sonication of bacteria, phytoplankton and zooplankton: Application to treatment of ballast water. Mar. Pollut. Bull. 56(6), 1201–1208 (2008)

    Article  Google Scholar 

  23. Koda, S., Miyamoto, M., Toma, M., Matsuoka, T., Maebayashi, M.: Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500kHz. Ultrason. Sonochem. 16(5), 655–659 (2009)

    Article  Google Scholar 

  24. Alvarez, U.M., Loske, A.M.: Bactericidal effect of shock waves: State of the art. In: Loske, M. (ed.) New Trends in Shock Wave Applications to Medicine and Biotechnology, pp. 225–244, Research Signpost, Kerala (2010)

    Google Scholar 

  25. Teshima, K.: High-Frequency Generation of High-Pressure Pulse Using a Diaphragmless Shock Tube. In: Proceedings of the 19th International Symposium on Shock Waves, Marseille, pp. 221–226 (1993)

    Google Scholar 

  26. Teshima, K., Ohshima, T., Tanaka, S., Nagai, T.: Biomechanical Effects of Shock Waves on Escherichia coli and λphage DNA. Shock Waves 4, 293–297 (1995)

    Article  Google Scholar 

  27. Loske, A.M., Prieto, F.E., Zavala, M.L., Santana, A.D., Armenta, E.: Repeated Application of Shock Waves as a Possible Method for Food Preservation. Shock Waves 9, 49–55 (1999)

    Article  Google Scholar 

  28. Loske, A.M., Alvarez, U.M., Galicia, C.H., Tostado, E.C., Prieto, F.E.: Bactericidal Effect of Underwater Shock Waves on Escherichia coli ATCC 10536 Suspensions. Innov. Food Sci. Emerg. Technol. 3, 321–327 (2002)

    Article  Google Scholar 

  29. Abe, A., Mimura, H., Ishida, H., Yoshida, K.: The Effect of Shock Pressures on the Inactivation of a Marine Vibrio sp. Shock Waves 17(682), 143–151 (2007)

    Article  Google Scholar 

  30. Johnson, G.R., Hoegfeldt, J.M., Lindholm, U.S., Nagy, A.: Response of Various Metals to Large Tortional Strains Over a Large Range of Strain Rates - Part 1: Ductile Metals. J. Eng. Mater. Technol. 105, 42–47 (1983)

    Article  Google Scholar 

  31. Rule, W.K., Jones, S.E.: A Revised Form for the Johnson-Cook Strength Model. Int. J. Impact Eng. 21(8), 609–624 (1998)

    Article  Google Scholar 

  32. Mcqueen, R.G., Marsh, S.P., Raylor, J.W., Fritz, J.N., Carter, W.J.: The Equation of State of Solids from Shock Wave Studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 293–417. Academic Press (1970)

    Google Scholar 

  33. Cole, R.H.: Underwater Explosion. Princeton University Press, USA (1948)

    Google Scholar 

  34. Lokhandwalla, M., Sturtevant, B.: Mechanical Haemolysis in Shock Wave Lithotripsy (SWL): I. Analysis of Cell Deformation due to SWL Flow-fields. Phys. Med. Biol. 46, 413–437 (2001)

    Article  Google Scholar 

  35. Takahashi, M., Chiba, K., Li, P.: Free-Radical Generation from Collapsing Microbubbles in the Absence of a Dynamic Stimulus. J. Phys. Chem. B 111(6), 1343–1347 (2007)

    Article  Google Scholar 

  36. Takahashi, M., Chiba, K., Li, P.: Formation of Hydroxyl Radicals by Collapsing Ozone Microbubbles under Strongly Acidic Conditions. J. Phys. Chem. B 111(39), 11443–11446 (2007)

    Article  Google Scholar 

  37. Wolfrum, B., Kurz, T., Mettin, R., Lauterborn, W.: Shock wave induced interaction of microbubbles and boundaries. Phys. Fluids 15(10), 2916–2922 (2003)

    Article  Google Scholar 

  38. Abe, A., Ohtani, K., Takayama, K., Nishio, S., Mimura, H., Takeda, M.: Pressure Generation from Micro-Bubble Collapse at Shock Wave Loading. J. Fluid Sci. Technol. 5(2), 235–246 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abe, A., Mimura, H. (2013). Sterilization of Ships’ Ballast Water. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_11

Download citation

Publish with us

Policies and ethics