Skip to main content

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

Abstract

This chapter provides a comprehensive review of the primary technologies used for shock wave generation and focusing, followed by an in-depth discussion of the acoustics of shock wave-stone interaction, mechanisms of stone fragmentation and tissue injury during shock wave lithotripsy (SWL). In particular, we introduce the first non-dimensional parameter that correlates closely with stone comminution. The general process of stone comminution in SWL is elucidated with regard to the varying contributions of stress waves and cavitation, as well as the evolving role of intrinsic vs. extrinsic flaw distributions in the target stone. These fundamental understandings provide valuable insights for the rational design of modern shock wave lithotripters. An example of improving the acoustic lens design in electromagnetic lithtoripters is given. Future perspectives in SWL research and development of iLithotripters are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaussy, C.G., Fuchs, G.J.: Current state and future developments of noninvasive treatment of human urinary stones with extracorporeal shock wave lithotripsy. Journal of Urology 141(3 Pt. 2), 782–789 (1989)

    Google Scholar 

  2. Lingeman, J.E., McAteer, J.A., Gnessin, E., Evan, A.P.: Shock wave lithotripsy: advances in technology and technique. Nature Reviews Urology 6(12), 660–670 (2009)

    Article  Google Scholar 

  3. Chaussy, C., Haupt, G., Jocham, D., Kohrmann, K., Wilbert, D.: Therapeutic Energy Applications in Urology: Standards and Recent Developments. Georg. Thieme Verlag (2005)

    Google Scholar 

  4. Chaussy, C., Schmiedt, E., Jocham, D., Brendel, W., Forssmann, B., Walther, V.: 1st Clinical-Experience with Extracorporeally Induced Destruction of Kidney-Stones by Shock-Waves. Journal of Urology 127(3), 417–420 (1982)

    Google Scholar 

  5. Chaussy, C., Schmiedt, E., Jocham, D.: Extracorporeal shock wave lithotripsy: New aspects in the treatment of kidney stone disease. In: Chaussy, C. (ed.). Karger, Basel (1982)

    Google Scholar 

  6. Rassweiler, J., Henkel, T.O., Kohrmann, K.U., Potempa, D., Junemann, K.P., Alken, P.: Lithotripter Technology - Present and Future. Journal of Endourology 6(1), 1–13 (1992), doi:10.1089/end.1992.6.1

    Article  Google Scholar 

  7. Lingeman, J.E.: Extracorporeal shock wave lithotripsy - Development, instrumentation, and current status. Urologic Clinics of North America 24(1), 185–211 (1997)

    Article  Google Scholar 

  8. Graber, S.F., Danuser, H., Hochreiter, W.W., Studer, U.E.: A prospective randomized trial comparing 2 lithotriptors for stone disintegration and induced renal trauma. Journal of Urology 169(1), 54–57 (2003)

    Article  Google Scholar 

  9. Gerber, R., Studer, U.E., Danuser, H.: Is newer always better? A comparative study of 3 lithotriptor generations. Journal of Urology 173(6), 2013–2016 (2005)

    Article  Google Scholar 

  10. Coleman, A.J., Saunders, J.E.: A review of the physical properties and biological effects of the high amplitude acoustic field used in extracorporeal lithotripsy. Ultrasonics 31(2), 75–89 (1993)

    Article  Google Scholar 

  11. Delius, M.: Medical applications and bioeffects of extracorporeal shock waves. Shock Waves 4(2), 55–72 (1994)

    Article  Google Scholar 

  12. Evan, A.P., McAteer, J.A.: Q-Effects of shock wave lithotripsy. In: Coe, F.L., Favus, M.J., Pak, C.Y.C., Parks, J.H., Preminger, G.M. (eds.) Kidney Stones: Medical and Surgical Management, pp. 549–570. Pennsylvania, Lippincott-Raven (1996)

    Google Scholar 

  13. Leighton, T.G., Cleveland, R.O.: Lithotripsy. Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine 224(H2), 317–342 (2010), doi:10.1243/09544119jeim588

    Article  Google Scholar 

  14. Rassweiler, J.J., Knoll, T., Kohrmann, K.U., McAteer, J.A., Lingeman, J.E., Cleveland, R.O., Bailey, M.R., Chaussy, C.: Shock Wave Technology and Application: An Update. European Urology 59(5), 784–796 (2011)

    Article  Google Scholar 

  15. Cleveland, R.O., McAteer, J.A.: The Physics of Shock Wave Lithotripsy. In: Smith, A.D., Badlani, G.H., Bagley, D.H., Clayman, R.V., Docimo, S.G., Jordan, G.H., Kavoussi, L.R., Lee, B.R., Lingeman, J.E., Preminger, G.M., Segura, J.W. (eds.) Smith’s Textbook on Endourology, pp. 317–332. BC Decker, Inc., Hamilton (2007)

    Google Scholar 

  16. Sturtevant, B.: Shock wave physics of lithotriptors. In: Smith, A.D., Badlani, G.H., Bagley, D.H. (eds.) Smith’s Textbook of Endourology, pp. 529–552. Quality Medical Publishing, St Louis (1996)

    Google Scholar 

  17. Coleman, A.J., Saunders, J.E.: A survey of the acoustic output of commercial extracorporeal shock wave lithotripters. Ultrasound in Medicine and Biology 15(3), 213–227 (1989)

    Article  Google Scholar 

  18. Eisenmenger, W., Du, X.X., Tang, C., Zhao, S., Wang, Y., Rong, F., Dai, D., Guan, M., Qi, A.: The first clinical results of ”wide-focus and low-pressure” ESWL. Ultrasound in Medicine and Biology 28(6), 769–774 (2002)

    Article  Google Scholar 

  19. IEC-standard: International Standard: Pressure Pulse lithotripters - Characteristics of fields IEC 61846 (1998)

    Google Scholar 

  20. Averkiou, M.A., Cleveland, R.O.: Modeling of an electrohydraulic lithotripter with the KZK equation. Journal of the Acoustical Society of America 106(1), 102–112 (1999)

    Article  Google Scholar 

  21. Fovargue, D., Mitran, S., Sankin, G., Smith, N., Zhong, P.: Experimentally validated multiphysics computational model of refracting shock wave lithotripter. Journal of the Acoustical Society of America 129(4), 2678–2678 (2011)

    Article  Google Scholar 

  22. Hamilton, M.F.: Transient Axial Solution for the Reflection of a Spherical Wave from a Concave Ellipsoidal Mirror. Journal of the Acoustical Society of America 93(3), 1256–1266 (1993)

    Article  Google Scholar 

  23. Iloreta, J.I., Zhou, Y.F., Sankin, G.N., Zhong, P., Szeri, A.J.: Assessment of shock wave lithotripters via cavitation potential. Physics of Fluids 19(8), Art. No. 086103 (2007)

    Google Scholar 

  24. Krimmel, J., Colonius, T., Tanguay, M.: Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters. Urological Research 38(6), 505–518 (2010)

    Article  Google Scholar 

  25. Thompson, P.A.: Compressible Fluid Dynamics. Advanced engineering series. McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  26. Sturtevant, B., Kulkarny, V.A.: Focusing of Weak Shock-Waves. Journal of Fluid Mechanics 73(FEB24), 651–671 (1976), doi:10.1017/s0022112076001559

    Article  Google Scholar 

  27. Cleveland, R.O., Lifshitz, D.A., Connors, B.A., Evan, A.P., Willis, L.R., Crum, L.A.: In vivo pressure measurements of lithotripsy shock waves in pigs. Ultrasound in Medicine and Biology 24(2), 293–306 (1998), doi:10.1016/s0301-5629(97)00270-6

    Article  Google Scholar 

  28. Filipczynski, L., Piechocki, M.: Estimation of the Temperature Increase in the Focus of a Lithotripter for the Case of High-Rate Administration. Ultrasound in Medicine and Biology 16(2), 149–156 (1990)

    Article  Google Scholar 

  29. Coleman, A.J., Choi, M.J., Saunders, J.E., Leighton, T.G.: Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound in Medicine and Biology 18(3), 267–281 (1992)

    Article  Google Scholar 

  30. Matula, T.J., Hilmo, P.R., Bailey, M.R.: A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices. Journal of the Acoustical Society of America 118(1), 178–185 (2005)

    Article  Google Scholar 

  31. Zhou, Y., Qin, J., Zhong, P.: Characteristics of the secondary bubble cluster produced by an electrohydraulic shock wave lithotripter. Ultrasound in Medicine and Biology 38(4), 601–610 (2012)

    Article  Google Scholar 

  32. Rassweiler, J.J., Tailly, G.G., Chaussy, C.: Progress in lithotriptor technology. EAU Update Series 3(1 SPEC. ISS.), 17–36 (2005)

    Article  Google Scholar 

  33. Cathignol, D., Birer, A., Nachef, S., Chapelon, J.Y.: Electronic Beam-Steering of Shock-Waves. Ultrasound in Medicine and Biology 21(3), 365–377 (1995)

    Article  Google Scholar 

  34. Chitnis, P.V., Barbone, P.E., Cleveland, R.O.: Customization of the acoustic field produced by a piezoelectric array through interelement delays. Journal of the Acoustical Society of America 123(6), 4174–4185 (2008)

    Article  Google Scholar 

  35. Lingeman, J.E., Kim, S.C., Kuo, R.L., McAteer, J.A., Evan, A.P.: Shockwave lithotripsy: anecdotes and insights. Journal of Endourology 17(9), 687–693 (2003)

    Article  Google Scholar 

  36. Lingeman, J.E., Zafar, F.S.: Lithotripsy systems. In: Smith, A.D., Badlani, G.H., Bagley, D.H. (eds.) Smith’s Textbook of Endourology, pp. 553–589. Quality Medical Publishers, St Louis (1996)

    Google Scholar 

  37. Pak, C.Y.: Pharmacotherapy of kidney stones. Expert Opinion on Pharmacotherapy 9(9), 1509–1518 (2008), doi:10.1517/14656566.9.9.1509

    Article  Google Scholar 

  38. Coe, F.L., Evan, A., Worcester, E.: Kidney stone disease. Journal of Clinical Investigation 115(10), 2598–2608 (2005)

    Article  Google Scholar 

  39. Sutor, D.J.: The nature of urinary stones. In: Finlayson, B., Hench, I.L., Smith, L.H. (eds.) Urolithiasis Physical Aspects, pp. 43–63. National Academy of Sciences, Washington (1972)

    Google Scholar 

  40. Zhong, P., Preminger, G.M.: Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. Journal of Endourology 8(4), 263–268 (1994)

    Article  Google Scholar 

  41. Johrde, L.G., Cocks, F.H.: Microhardness Studies of Renal Calculi. Materials Letters 3(3), 111–114 (1985)

    Article  Google Scholar 

  42. Zhong, P., Chuong, C.J., Goolsby, R.D., Preminger, G.M.: Microhardness Measurements of Renal Calculi - Regional Differences and Effects of Microstructure. Journal of Biomedical Materials Research 26(9), 1117–1130 (1992)

    Article  Google Scholar 

  43. Zhong, P., Chuong, C.J., Preminger, G.M.: Characterization of Fracture-Toughness of Renal Calculi Using a Microindentation Technique. Journal of Materials Science Letters 12(18), 1460–1462 (1993)

    Article  Google Scholar 

  44. Chuong, C.J., Zhong, P., Preminger, G.M.: Acoustic and Mechanical-Properties of Renal Calculi - Implications in Shock-Wave Lithotripsy. Journal of Endourology 7(6), 437–444 (1993)

    Article  Google Scholar 

  45. Ali, A.M., Raj, N.A.N.: Tensile, flexural and compressive strength studies on natural and artificial phosphate urinary stones. Urological Research 36(6), 289–295 (2008)

    Article  Google Scholar 

  46. Ebrahimi, F., Wang, F.: Fracture-Behavior of Urinary Stones under Compression. Journal of Biomedical Materials Research 23(5), 507–521 (1989)

    Article  Google Scholar 

  47. Johrde, L.G., Cocks, F.H.: Fracture Strength Studies of Renal Calculi. Journal of Materials Science Letters 4(10), 1264–1265 (1985)

    Article  Google Scholar 

  48. Khan, S.R., Hackett, R.L., Finlayson, B.: Morphology of Urinary Stone Particles Resulting from Eswl Treatment. Journal of Urology 136(6), 1367–1372 (1986)

    Google Scholar 

  49. Bhatta, K.M., Prien, E.L., Dretler, S.P.: Cystine Calculi Rough and Smooth - a New Clinical Distinction. Journal of Urology 142(4), 937–940 (1989)

    Google Scholar 

  50. Brekhovskikh, L.M., Godin, O.A.: Acoustics of Layered Media I: Plane and Quasi-Plane Waves. Springer Series on Wave Phenomena. Springer (1990)

    Google Scholar 

  51. Červený, V., Ravindra, R.: Theory of seismic head waves. University of Toronto Press (1971)

    Google Scholar 

  52. Viktorov, I.A.: Rayleigh and Lamb waves: physical theory and applications. Ultrasonic technology. Plenum Press, New York (1967)

    Google Scholar 

  53. Meegan, G.D., Hamilton, M.F., Il’inskii, Y.A., Zabolotskaya, E.A.: Nonlinear Stoneley and Scholte waves. Journal of the Acoustical Society of America 106(4), 1712–1723 (1999)

    Article  Google Scholar 

  54. Xi, X., Zhong, P.: Dynamic photoelastic study of the transient stress field in solids during shock wave lithotripsy. Journal of the Acoustical Society of America 109(3), 1226–1239 (2001)

    Article  Google Scholar 

  55. Cleveland, R.O., Sapozhnikov, O.A.: Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. Journal of the Acoustical Society of America 118(4), 2667–2676 (2005)

    Article  Google Scholar 

  56. Sapozhnikov, O.A., Maxwell, A.D., MacConaghy, B., Bailey, M.R.: A mechanistic analysis of stone fracture in lithotripsy. Journal of the Acoustical Society of America 121(2), 1190–1202 (2007)

    Article  Google Scholar 

  57. Gracewski, S.M., Dahake, G., Ding, Z., Burns, S.J., Everbach, E.C.: Internal stress wave measurements in solids subjected to lithotripter pulses. Journal of the Acoustical Society of America 94(2 Pt. 1), 652–661 (1993)

    Article  Google Scholar 

  58. Wijerathne, M.L.L., Hori, M., Sakaguchi, H., Oguni, K.: 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy. In: 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics, vol. 10 (2010)

    Google Scholar 

  59. Church, C.C.: A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. Journal of the Acoustical Society of America 86(1), 215–227 (1989)

    Article  MathSciNet  Google Scholar 

  60. Calvisi, M.L., Iloreta, J.I., Szeri, A.J.: Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse. Journal of Fluid Mechanics 616, 63–97 (2008), doi:10.1017/s0022112008003054

    Article  MATH  Google Scholar 

  61. Pishchalnikov, Y.A., Sapozhnikov, O.A., Bailey, M.R., Jr Williams, J.C., Cleveland, R.O., Colonius, T., Crum, L.A., Evan, A.P., McAteer, J.A.: Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. Journal of Endourology 17(7), 435–446 (2003)

    Article  Google Scholar 

  62. Sass, W., Braunlich, M., Dreyer, H.P., Matura, E., Folberth, W., Preismeyer, H.G., Seifert, J.: The mechanisms of stone disintegration by shock waves. Ultrasound Med. Biol. 17(3), 239–243 (1991)

    Article  Google Scholar 

  63. Blake, J.R., Taib, B.B., Doherty, G.: Transient Cavities near Boundaries.1. Rigid Boundary. Journal of Fluid Mechanics 170, 479–497 (1986), doi:10.1017/s0022112086000988

    Article  MATH  Google Scholar 

  64. Crum, L.A.: Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. Journal of Urology 140(6), 1587–1590 (1988)

    Google Scholar 

  65. Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shockwave lithotripsy. Journal of the Acoustical Society of America 124(4), 2011–2020 (2008)

    Article  Google Scholar 

  66. Johnsen, E., Colonius, T.: Numerical simulations of non-spherical bubble collapse. Journal of Fluid Mechanics 629, 231–262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Philipp, A., Delius, M., Scheffczyk, C., Vogel, A., Lauterborn, W.: Interaction of Lithotripter-Generated Shock-Waves with Air Bubbles. Journal of the Acoustical Society of America 93(5), 2496–2509 (1993)

    Article  Google Scholar 

  68. Sankin, G.N., Simmons, W.N., Zhu, S.L., Zhong, P.: Shock wave interaction with laser-generated single bubbles. Physical Review Letters 95(3), 034501 (2005)

    Article  Google Scholar 

  69. Tomita, Y., Shima, A.: Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse. Journal of Fluid Mechanics 169, 535–564 (1986), doi:10.1017/s0022112086000745

    Article  Google Scholar 

  70. Turangan, C.K., Jamaluddin, A.R., Ball, G.J., Leighton, T.G.: Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. Journal of Fluid Mechanics 598, 1–25 (2008)

    Article  MATH  Google Scholar 

  71. Zhong, P., Chuong, C.J.: Propagation of shock waves in elastic solids caused by cavitation microjet impact. I: Theoretical formulation. Journal of the Acoustical Society of America 94(1), 19–28 (1993)

    Article  Google Scholar 

  72. Zhong, P., Chuong, C.J., Preminger, G.M.: Propagation of shock waves in elastic solids caused by cavitation microjet impact. II: Application in extracorporeal shock wave lithotripsy. Journal of the Acoustical Society of America 94(1), 29–36 (1993)

    Article  Google Scholar 

  73. Griffith, A.A.: The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London Series a-Containing Papers of a Mathemaical or Physical Character 221, 163–198 (1921)

    Article  Google Scholar 

  74. Lawn, B.R.: Atomistic Model of Kinetic Crack Growth in Brittle Solids. Journal of Materials Science 10(3), 469–480 (1975)

    Article  Google Scholar 

  75. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics 24, 361–364 (1957)

    Google Scholar 

  76. Freund, L.B.: Dynamic fracture mechanics Cambridge Monographs on Mechanics. Cambridge University Press (1998)

    Google Scholar 

  77. Lokhandwalla, M., Sturtevant, B.: Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Physics in Medicine and Biology 45(7), 1923–1940 (2000)

    Article  Google Scholar 

  78. Sylven, E.T., Agarwal, S., Briant, C.L., Cleveland, R.O.: High strain rate testing of kidney stones. Journal of Materials Science-Materials in Medicine 15(5), 613–617 (2004)

    Article  Google Scholar 

  79. Qin, J., Simmons, W.N., Sankin, G., Zhong, P.: Effect of lithotripter focal width on stone comminution in shock wave lithotripsy. Journal of the Acoustical Society of America 127(4), 2635–2645 (2010)

    Article  Google Scholar 

  80. Bierkens, A.F., Hendrikx, A.J., de Kort, V.J., de Reyke, T., Bruynen, C.A., Bouve, E.R., Beek, T.V., Vos, P., Berkel, H.V.: Efficacy of second generation lithotriptors: a multicenter comparative study of 2,206 extracorporeal shock wave lithotripsy treatments with the Siemens Lithostar, Dornier HM4, Wolf Piezolith 2300, Direx Tripter X-1 and Breakstone lithotriptors. Journal of Urology 148(3 Pt. 2), 1052–1056, Discussion 1056–1057 (1992)

    Google Scholar 

  81. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures 33(20-22), 2899–2938 (1996)

    Article  MATH  Google Scholar 

  82. Dugdale, D.S.: Yielding of Steel Sheets Containing Slits. Journal of the Mechanics and Physics of Solids 8(2), 100–104 (1960)

    Article  Google Scholar 

  83. Ortiz, M.: Microcrack Coalescence and Macroscopic Crack-Growth Initiation in Brittle Solids. International Journal of Solids and Structures 24(3), 231–250 (1988)

    Article  Google Scholar 

  84. Chaussy, C., Brendel, W., Schmiedt, E.: Extracorporeally induced destruction of kidney stones by shock waves. Lancet 2(8207), 1265–1268 (1980)

    Article  Google Scholar 

  85. Forssmann, B., Hepp, W., Chaussy, C., Eisenberger, F., Wanner, K.: Method for No-Contact Destruction of Kidney Stones by Means of Shock-Waves. Biomedizinische Technik 22(7-8), 164–168 (1977), doi:10.1515/bmte.1977.22.7-8.164

    Google Scholar 

  86. Coleman, A.J., Saunders, J.E., Crum, L.A., Dyson, M.: Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound in Medicine and Biology 13(2), 69–76 (1987)

    Article  Google Scholar 

  87. Van Mller, M.: Experimentelle Untersuchungen zur Fokussierung sphrischer Stowellen in Wasser durch tiefe ellipsoide Reflektoren. Acta Acustica United with Acustica 66(5), 258–266 (1988)

    Google Scholar 

  88. Koch, H., Grunewald, M.: Disintegration mechanisms of weak acoustical shock waves. In: Ultrasound Int. Conf. Proc. 1989, Butterworth, Guildford, pp. 1136–1141 (1989)

    Google Scholar 

  89. Chuong, C.J.C., Zhong, P., Preminger, G.M.: Stone Damage Modes During Piezoelectric Shock Wave Delivery. Journal of Urology 141(4 Pt. 2), 341A (1989)

    Google Scholar 

  90. Vakil, N., Gracewski, S.M., Everbach, E.C.: Relationship of Model Stone Properties to Fragmentation Mechanisms during Lithotripsy. Journal of Lithotripsy & Stone Disease 3(4), 304–310 (1991)

    Google Scholar 

  91. Lubock, P.: The Physics and Mechanics of Lithotripters. Digestive Diseases and Sciences 34(7), 999–1005 (1989)

    Article  Google Scholar 

  92. Dahake, G., Gracewski, S.M.: Finite difference predictions of P-SV wave propagation inside submerged solids.2. Effect of geometry. Journal of the Acoustical Society of America 102(4), 2138–2145 (1997)

    Article  Google Scholar 

  93. Delius, M., Ueberle, F., Gambihler, S.: Destruction of Gallstones and Model Stones by Extracorporeal Shock-Waves. Ultrasound in Medicine and Biology 20(3), 251–258 (1994)

    Article  Google Scholar 

  94. Rinehart, J.S.: Stress transients in solids. HyperDynamics Santa Fe, N.M. (1975)

    Google Scholar 

  95. Eisenmenger, W.: The mechanisms of stone fragmentation in ESWL. Ultrasound in Medicine and Biology 27(5), 683–693 (2001)

    Article  Google Scholar 

  96. Redner, S.: Statistical-Theory of Fragmentation. Disorder and Fracture 235, 31–49 (1990)

    Article  Google Scholar 

  97. Smith, N., Zhong, P.: Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy. Journal of Biomechanics (in review, 2012)

    Google Scholar 

  98. Zhu, S., Cocks, F.H., Preminger, G.M., Zhong, P.: The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound in Medicine and Biology 28(5), 661–671 (2002)

    Article  Google Scholar 

  99. Delius, M., Gambihler, S.: Effect of shock waves on gallstones and materials. In: Paumgartner, G., Sanerbruch, T., Sackmann, M., Burhenne, H. (eds.) Lithotripsy and Related Techniques for Gallstone Treatment, pp. 27–33. Mosby Year Book, St. Louis (1991)

    Google Scholar 

  100. Bowden, F.P., Field, J.E.: Brittle Fracture of Solids by Liquid Impact by Solid Impact + by Shock. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 282(1390), 331–352 (1964)

    Article  Google Scholar 

  101. Blowers, R.M.: On the Response of an Elastic Solids to Droplet Impact. Journal of the Institute of Mathematics and its Applications 5(2), 167–193 (1969)

    Article  MATH  Google Scholar 

  102. Granz, B., Kohler, G.: What makes a shock wave efficient in lithotripsy? Journal of Stone Disease 103, 123–128 (1992)

    Google Scholar 

  103. Ueberle, F.: Pressure pulses in extracorporeal shock wavelithotripsy and extracorporeal shock wave pain therapy. In: Rapp, G.R., Srivastava, R.C., Leutloff, D. (eds.) Shock Focussing Effect in Medical Science and Sonoluminescence, pp. 179–210. Springer (2003)

    Google Scholar 

  104. Zhong, P.: Innovations in lithotripsy technology. In: AIP Conference Proceedings 1st Annual International Urolithiasis Research Symposium, IN 2007, Indianapolis, pp. 317–325 (2007)

    Google Scholar 

  105. Weibull, W.: A statistical distribution function of wide applicability. Journal of Applied Mechanics 18, 293–297 (1951), doi:citeulike-article-id:8491543

    MATH  Google Scholar 

  106. Danzer, R., Supancic, P., Pascual, J., Lube, T.: Fracture statistics of ceramics - Weibull statistics and deviations from Weibull statistics. Engineering Fracture Mechanics 74(18), 2919–2932 (2007), doi:10.1016/j.engfracmech.2006.05.028

    Article  Google Scholar 

  107. Forquin, P., Hild, F.: A Probabilistic Damage Model of the Dynamic Fragmentation Process in Brittle Materials. Advances in Applied Mechanics, vol. 44, pp. 1–72 (2010)

    Google Scholar 

  108. Mota, A., Knap, J., Ortiz, M.: Three-dimensional fracture and fragmentation of artificial kidney stones. In: SciDAC 2006, Scientific Discovery Through Advanced Computing, vol. 46, pp. 299–303 (2006)

    Google Scholar 

  109. Zohdi, T.I., Szeri, A.J.: Fatigue of kidney stones with heterogeneous microstructure subjected to shock-wave lithotripsy. Journal of Biomedical Materials Research Part B: Applied Biomaterials 75(2), 351–358 (2005)

    Article  Google Scholar 

  110. Pishchalnikov, Y.A., McAteer, J.A., Jr Williams, J.C., Pishchalnikova, I.V., Vonderhaar, R.J.: Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. Journal of Endourology 20(8), 537–541 (2006)

    Article  Google Scholar 

  111. Lautz, J., Sankin, G., Zhong, P.: Synergistic interaction between stress waves and cavitation is important for successful comminution of residual stone fragments in shock wave lithotripsy. The Journal of the Acoustical Society of America 130(4), 2538–2538 (2011)

    Article  Google Scholar 

  112. Quinn, J.B., Quinn, G.D.: A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dental Materials 26(2), 135–147 (2010), doi:S0109-5641(09)00310-8 [pii] 10.1016/j.dental.2009.09.006

    Google Scholar 

  113. Davidge, R.W.: Mechanical Behaviour of Ceramics. Cambridge University Press (1979)

    Google Scholar 

  114. Cleveland, R.O., McAteer, J.A., Muller, R.: Time-lapse nondestructive assessment of shock wave damage to kidney stones in vitro using micro-computed tomography. Journal of the Acoustical Society of America 110(4), 1733–1736 (2001)

    Article  Google Scholar 

  115. Cleveland, R.O., Anglade, R., Babayan, R.K.: Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. Journal of Endourology 18(7), 629–633 (2004)

    Article  Google Scholar 

  116. Leighton, T.G., Fedele, F., Coleman, A.J., McCarthy, C., Ryves, S., Hurrell, A.M., De Stefano, A., White, P.R.: A Passive Acoustic Device for Real-Time Monitoring of the Efficacy of Shockwave Lithotripsy Treatment. Ultrasound in Medicine and Biology 34(10), 1651–1665 (2008)

    Article  Google Scholar 

  117. Cleveland, R.O., Cauweleart, J.V.: Fragmentation mechanisms of kidney stones in shock wave lithotripsy can be detected with microCT X-ray imaging. In: Cassereau, D., Kob, M. (eds.) Proceedings of the Joint German Convention on Acoustics and Congrs Francais d’Acoustique (CFA), Strasbourg, France, pp. 981–982 (2004)

    Google Scholar 

  118. Tew, R.H.: Diffraction of sound by a surface inhomogeneity at a fluid-solid interface. European Journal of Applied Mathematics 3(2), 115–145 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  119. McAteer, J.A., Evan, A.P.: The acute and long-term adverse effects of shock wave lithotripsy. Seminars in Nephrology 28(2), 200–213 (2008), doi:S0270-9295(08)00028-4 [pii] 10.1016/j.semnephrol.2008.01.003

    Google Scholar 

  120. Skolarikos, A., Alivizatos, G., de la Rosette, J.: Extracorporeal shock wave lithotripsy 25 years later: complications and their prevention. European Urology 50(5), 981–990, discussion 990 (2006)

    Article  Google Scholar 

  121. Evan, A.P., Willis, L.R., Lingeman, J.E., McAteer, J.A.: Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron 78(1), 1–8 (1998)

    Article  Google Scholar 

  122. Willis, L.R., Evan, A.P., Connors, B.A., Blomgren, P., Fineberg, N.S., Lingeman, J.E.: Relationship between kidney size, renal injury, and renal impairment induced by shock wave lithotripsy. Journal of the American Society of Nephrology 10(8), 1753–1762 (1999)

    Google Scholar 

  123. Delius, M., Enders, G., Xuan, Z.R., Liebich, H.G., Brendel, W.: Biological effects of shock waves: kidney damage by shock waves in dogs–dose dependence. Ultrasound in Medicine and Biology 14(2), 117–122 (1988)

    Article  Google Scholar 

  124. Delius, M., Jordan, M., Liebich, H.G., Brendel, W.: Biological Effects of Shock-Waves - Effect of Shock-Waves on the Liver and Gallbladder Wall of Dogs - Administration Rate Dependence. Ultrasound in Medicine and Biology 16(5), 459–466 (1990)

    Article  Google Scholar 

  125. Delius, M., Denk, R., Berding, C., Liebich, H.G., Jordan, M., Brendel, W.: Biological Effects of Shock-Waves - Cavitation by Shock-Waves in Piglet Liver. Ultrasound in Medicine and Biology 16(5), 467–472 (1990)

    Article  Google Scholar 

  126. Dalecki, D., Raeman, C.H., Child, S.Z., Penney, D.P., Mayer, R., Carstensen, E.L.: The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound in Medicine and Biology 23(9), 1435–1439 (1997)

    Article  Google Scholar 

  127. Matlaga, B.R., Mcateer, J.A., Connors, B.A., Handa, R.K., Evan, A.P., Williams, J.C., Lingeman, J.E., Willis, L.R.: Potential for cavitation-mediated tissue damage in shock wave lithotripsy. Journal of Endourology 22(1), 121–126 (2008)

    Article  Google Scholar 

  128. Freund, J.B., Colonius, T., Evan, A.P.: A cumulative shear mechanism for tissue damage initiation in shock wave lithotripsy. Ultrasound in Medicine and Biology 33(9), 1495–1503 (2007)

    Article  Google Scholar 

  129. Howard, D., Sturtevant, B.: In vitro study of the mechanical effects of shock-wave lithotripsy. Ultrasound in Medicine and Biology 23(7), 1107–1122 (1997)

    Article  Google Scholar 

  130. Zhong, P., Zhou, Y., Zhu, S.: Dynamics of bubble oscillation in constrained media and mechanisms of vessel rupture in SWL. Ultrasound in Medicine and Biology 27(1), 119–134 (2001)

    Article  Google Scholar 

  131. Evan, A.P., Willis, L.R., McAteer, J.A., Bailey, M.R., Connors, B.A., Shao, Y., Lingeman, J.E., Jr Williams, J.C., Fineberg, N.S., Crum, L.A.: Kidney damage and renal functional changes are minimized by waveform control that suppresses cavitation in shock wave lithotripsy. Journal of Urology 168(4 Pt. 1), 1556–1562 (2002)

    Google Scholar 

  132. Zhou, Y., Cocks, F.H., Preminger, G.M., Zhong, P.: Innovations in shock wave lithotripsy technology: updates in experimental studies. Journal of Urology Urol. 172(5 Pt. 1), 1892–1898 (2004)

    Article  Google Scholar 

  133. Zhong, P., Zhou, Y.: Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. Journal of the Acoustical Society of America 110(6), 3283–3291 (2001)

    Article  Google Scholar 

  134. Chen, H., Perez, C., Brayman, A.A., Matula, T.J.: High speed imaging of shock wave-induced dynamics of cavitation bubbles and vessel wall. Journal of the Acoustical Society of America 129(4), 2374–2374 (2011)

    Google Scholar 

  135. McAteer, J.A., Evan, A.P., Connors, B.A., Blomgren, P.M.: Focused destruction of renal tissue by a narrow focal width lithotripter. Journal of the Acoustical Society of America 129(4), 2476–2476 (2011)

    Article  Google Scholar 

  136. Carstensen, E.L., Gracewski, S., Dalecki, D.: The search for cavitation in vivo. Ultrasound in Medicine and Biology 26(9), 1377–1385 (2000)

    Article  Google Scholar 

  137. Willis, L.R., Evan, A.P., Connors, B.A., Blomgren, P.M., Handa, R.K., Lingeman, J.E.: Prevention of lithotripsy-induced renal injury by application of low-energy shock waves prior to application of high-energy shock waves. Journal of the American Society of Nephrology 14, 699A (2003)

    Google Scholar 

  138. Willis, L.R., Evan, A.P., Connors, B.A., Shao, Y., Blomgren, P.M., Pratt, J.H., Fineberg, N.S., Lingeman, J.E.: Shockwave lithotripsy: dose-related effects on renal structure, hemodynamics, and tubular function. Journal of Endourology 19(1), 90–101 (2005)

    Article  Google Scholar 

  139. Handa, R.K., Bailey, M.R., Paun, M., Gao, S., Connors, B.A., Willis, L.R., Evan, A.P.: Pretreatment with low-energy shock waves induces renal vasoconstriction during standard shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal injury. Bju International 103(9), 1270–1274 (2009)

    Article  Google Scholar 

  140. Evan, A.P., McAteer, J.A., Connors, B.A., Blomgren, P.M., Lingeman, J.E.: Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery. Bju, International 100(3), 627–628, discussion 627–628 (2007)

    Google Scholar 

  141. Evan, A.P., McAteer, J.A., Connors, B.A., Pishchalnikov, Y.A., Handa, R.K., Blomgren, P., Willis, L.R., Jr Williams, J.C., Lingeman, J.E., Gao, S.: Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. Bju International 101(3), 382–388 (2008)

    Article  Google Scholar 

  142. Paterson, R.F., Lifshitz, D.A., Lingeman, J.E., Evan, A.P., Connors, B.A., Fineberg, N.S., Jr Williams, J.C., McAteer, J.A.: Stone fragmentation during shock wave lithotripsy is improved by slowing the shock wave rate: Studies with a new animal model. Journal of Urology 168(5), 2211–2215 (2002)

    Article  Google Scholar 

  143. Delius, M., Jordan, M., Eizenhoefer, H., Marlinghaus, E., Heine, G., Liebich, H.G., Brendel, W.: Biological effects of shock waves: kidney haemorrhage by shock waves in dogs–administration rate dependence. Ultrasound in Medicine and Biolody 14(8), 689–694 (1988)

    Article  Google Scholar 

  144. Zhou, Y., Zhong, P.: Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry. Journal of the Acoustical Society of America 113(1), 586–597 (2003)

    Article  Google Scholar 

  145. Pishchalnikov, Y.A., Neucks, J.S., VonDerHaar, R.J., Pishchalnikova, I.V., Jr Williams, J.C., McAteer, J.A.: Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. Journal of Urology 176(6 Pt. 1), 2706–2710 (2006)

    Article  Google Scholar 

  146. Zhong, P., Smith, N., Simmons, N.W., Sankin, G.: A New Acoustic Lens Design for Electromagnetic Shock Wave Lithotripters. In: 10th International Symposium on Therepeutic Ultrasound (ISTU 2010), Tokyo, Japan, Jun. 9-12, vol. 1, pp. 42–47. AIP (2010, 2011)

    Google Scholar 

  147. Mancini, J.G., Simmons, W.N., Raymundo, M.E.M.: In Vivo Stone Fragmentation and Tissue Injury Produced by a New Acoustic Lens for a Siemens Lithotripter. Journal of Endourology 24, A20 (2010)

    Google Scholar 

  148. Delius, M., Brendel, W.: A model of extracorporeal shock wave action: tandem action of shock waves. Ultrasound in Medicine and Biology 14(6), 515–518 (1988)

    Article  Google Scholar 

  149. Xi, X., Zhong, P.: Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Ultrasound in Medicine and Biology 26(3), 457–467 (2000)

    Article  Google Scholar 

  150. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Dual-pulse lithotripter accelerates stone fragmentation and reduces cell lysis in vitro. Ultrasound in Medicine and Biology 29(7), 1045–1052 (2003)

    Article  Google Scholar 

  151. Sheir, K.Z., El-Diasty, T.A., Ismail, A.M.: Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: the first prospective clinical study. Bju International 95(3), 389–393 (2005)

    Article  Google Scholar 

  152. Loske, A.M., Fernandez, F., Zendejas, H., Paredes, M., Castano-Tostado, E.: Dual pulse shock wave lithotripsy: in vitro and in vivo study. Journal of Urology 174(6), 2388–2392 (2005)

    Article  Google Scholar 

  153. Owen, N.R., Bailey, M.R., Crum, L.A., Sapozhnikov, O.A., Trusov, L.A.: The use of resonant scattering to identify stone fracture in shock wave lithotripsy. Journal of the Acoustical Society of America 121(1), EL41–EL47 (2007)

    Google Scholar 

  154. Shah, A., Harper, J.D., Cunitz, B.W., Wang, Y.N., Paun, M., Simon, J.C., Lu, W., Kaczkowski, P.J., Bailey, M.R.: Focused ultrasound to expel calculi from the kidney. Journal of Urology 187(2), 739–743 (2012), doi:S0022-5347(11)05200-1 [pii] 10.1016/j.juro.2011.09.144

    Google Scholar 

  155. Akers, S.R., Cocks, F.H., Weinerth, J.L.: Extracorporeal shock wave lithotripsy: the use of chemical treatments for improved stone comminution. Journal of Urology 138(5), 1295–1300 (1987)

    Google Scholar 

  156. Heimbach, D., Kourambas, J., Zhong, P., Jacobs, H., Hesse, A., Mueller, S.C., Delvecchio, F.C., Cocks, F.H., Preminger, G.M.: The use of chemical treatments for improved comminution of artificial stones. Journal of Urology 171(5), 1797–1801 (2004), doi:10.1097/01.ju.0000118962.31123.fd

    Article  Google Scholar 

  157. Esch, E., Simmons, W.N., Sankin, G., Cocks, H.F., Preminger, G.M., Zhong, P.: A simple method for fabricating artificial kidney stones of different physical properties. Urological Research 38(4), 315–319 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhong, P. (2013). Shock Wave Lithotripsy. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_10

Download citation

Publish with us

Policies and ethics