Skip to main content

Shock Wave Interaction with Single Bubbles and Bubble Clouds

  • Chapter
Bubble Dynamics and Shock Waves

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 8))

Abstract

Research on the interaction of shock waves with bubbles is highlighted by describing historic studies and recent experiments. We distinguish between the interaction of stable gas bubbles and cavitation bubbles. Gas bubbles and stabilized liquid menisci demonstrate a rapid jetting mechanism if exposed to shock waves. Cavitation bubbles can by themselves interact through the emission of acoustic transients and shock waves. We summarize some of the work on the interaction of stable bubbles and cavitation bubbles in clouds with shock waves. Most of the experimental findings are compared to simulation results using Boundary Element Method, Free Lagrange methods, and various techniques to solve the Euler equations with Finite Differences and Finite Volume techniques. We conclude this chapter by presenting recent advances from molecular dynamics simulations to predict nanobubble shock wave interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Niederhaus, J.H.J., Greenough, J.A., Oakley, J.G., Ranjan, D., Anderson, M.H., Bonazza, R.: A computational parameter study for the three-dimensional shock-bubble interaction. J. Fluid Mech. 594, 85–124 (2008)

    Article  MATH  Google Scholar 

  2. Ranjan, D., Oakley, J., Bonazza, R.: Shock-bubble interactions. Annu. Rev. Fluid Mech. 43, 117–140 (2011)

    Article  MathSciNet  Google Scholar 

  3. Jamaluddin, A.R., Ball, G.J., Turangan, C.K., Leighton, T.G.: The Collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy. J. Fluid Mech. 677, 305–341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dear, J.P., Field, J.E.: A study of the collapse of arrays of cavities. J. Fluid Mech. 190, 409–425 (1988)

    Article  Google Scholar 

  5. Bourne, N.K., Field, J.E.: Shock-induced collapse of single cavities in liquids. J. Fluid Mech. 244, 225–240 (1992)

    Article  Google Scholar 

  6. Bourne, N.K., Field, J.E.: Explosive ignition by the collapse of cavities. Proc. R. Soc. Lond. A 455, 2411–2426 (1999)

    Article  MathSciNet  Google Scholar 

  7. Dear, J., Field, J., Walton, A.: Gas-compression and jet formation in cavities collapsed by a shock-wave. Nature 332, 505–508 (1988)

    Article  Google Scholar 

  8. Brenner, M.P., Hilgenfeldt, S., Lohse, D.: Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425–484 (2002)

    Article  Google Scholar 

  9. Ohl, C.D., Lindau, O., Lauterborn, W.: Luminescence from spherically and aspherically collapsing laser induced bubbles. Phys. Rev. Lett. 80, 393–396 (1998)

    Article  Google Scholar 

  10. Baghdassarian, O., Tabbert, B., Williams, G.A.: Luminescence characteristics of laser-induced bubbles in water. Phys. Rev. Lett. 83, 2437–2440 (1999)

    Article  Google Scholar 

  11. Matula, T.J.: Single-bubble sonoluminescence in microgravity. Ultrasonics 38, 559–565 (2000)

    Article  Google Scholar 

  12. Matula, T.J., Hilmo, P.R., Bailey, M.R., Crum, L.A.: In vitro sonoluminescence and sonochemistry studies with an electrohydraulic shock-wave lithotripter. Ultra-sound Med. Biol. 28, 1199–1207 (2002)

    Article  Google Scholar 

  13. Philipp, A., Delius, M., Scheffczyk, C., Vogel, A., Lauterborn, W.: Interaction of lithotripter-generated shock waves with air bubbles. J. Acoust. Soc. Am. 93, 2496–2509 (1993)

    Article  Google Scholar 

  14. Ohl, C.D., Ikink, R.: Shock-wave induced jetting of micron-size bubbles. Phys. Rev. Lett. 90, Art. No. 214502 (2003)

    Google Scholar 

  15. Leighton, T.G.: The Acoustic Bubble. Academic Press (1997)

    Google Scholar 

  16. Craig, V.S.J.: Very small bubbles at surfaces-the nanobubble puzzle. Soft Matter 7, 40 (2011)

    Article  Google Scholar 

  17. Borkent, B.M., Dammer, S.M., Schnherr, H., Vancso, G.J., Lohse, D.: Super-stability of surface nanobubbles. Phys. Rev. Lett. 98, Art. No. 204502 (2007)

    Google Scholar 

  18. Borkent, B.M., Gekle, S., Prosperetti, A., Lohse, D.: Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei. Phys. Fluids 21, 102003 (2009)

    Article  Google Scholar 

  19. Atchley, A.A., Prosperetti, A.: The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86, 1065–1084 (1989)

    Article  Google Scholar 

  20. Ball, G.J., Howell, B.P., Leighton, T.G., Schofield, M.J.: Shock-induced collapse of a cylindrical air cavity in water: a Free-Lagrange simulation. Shock Waves 10, 265–276 (2000)

    Article  MATH  Google Scholar 

  21. Turangan, C.K.: Free-Lagrange simulations of single cavitation bubble collapse. Dissertation. University of Southampton, School of Engineering Sciences (2004)

    Google Scholar 

  22. Turangan, C.K., Jamaluddin, A.R., Ball, G.J., Leighton, T.G.: Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water. J. Fluid Mech. 598, 1–25 (2008)

    Article  MATH  Google Scholar 

  23. Jamaluddin, A.R.: Free-Lagrange simulations of shock-bubble interaction in extracorporeal shock wave lithotripsy. Dissertation. University of Southampton, School of Engineering Sciences (2005)

    Google Scholar 

  24. Ding, Z., Gracewski, S.M.: The behaviour of a gas cavity impacted by a weak or strong shock wave. J. Fluid Mech. 309, 183–209 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miao, H., Gracewski, S.M., Dalecki, D.: Ultrasonic excitation of a bubble inside a deformable tube: implications for ultrasonically induced hemorrhage. J. Acoust. Soc. Am. 124, 2374–2384 (2008)

    Article  Google Scholar 

  26. Klaseboer, E., Turangan, C., Fong, S.W., Liu, T.G., Hung, K.C., Khoo, B.C.: Simulations of pressure pulse-bubble interaction using Boundary Element Method. Comp. Methods Appl. Mech. Engrg. 195, 4287–4302 (2006)

    Article  MATH  Google Scholar 

  27. Calvisi, M.L.: Shape stability and violent collapse of microbubbles interacting with acoustic waves and shocks. Dissertation. University of California, Berkeley (2006)

    Google Scholar 

  28. Calvisi, M.L., Iloreta, J.I., Szeri, A.J.: Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse. J. Fluid Mech. 616, 63–97 (2008)

    Article  MATH  Google Scholar 

  29. Wang, Q.X., Blake, J.R.: Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191–224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Q.X., Blake, J.R.: Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J. Fluid Mech. 679, 559–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Johnsen, E., Colonius, T.: Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231–262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Johnsen, E.: Numerical simulations of non-spherical bubble collapse: with application to shockwave lithotripsy. Dissertation. California Institute of Technology (2007)

    Google Scholar 

  33. Kodama, T., Tomita, Y.: Cavitation bubble behavior and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics. Appl. Phys. B: Lasers O 70, 139–149 (2000)

    Article  Google Scholar 

  34. Bowden, F.P., McOnie, M.P.: Cavities and micro Munro jets in liquids: their role in explosion. Nature 206, 380–383 (1965)

    Article  Google Scholar 

  35. Frenz, M., Paltauf, G., Schmidt-Kloiber, H.: Laser-generated cavitation in absorbing liquid induced by acoustic diffraction. Phys. Rev. Lett. 76, 3546–3549 (1996)

    Article  Google Scholar 

  36. Antkowiak, A., Bremond, N., Le Dizs, S., Villermaux, E.: Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241–250 (2007)

    Article  MATH  Google Scholar 

  37. Dijkink, R.J.: Confined cavitation: an experimental study. Dissertation. University of Twente (2009)

    Google Scholar 

  38. Tagawa, Y., Oudalov, N., Visser, C.W., Peters, I.R., van der Meer, D., Sun, C., Prosperetti, A., Lohse, D.: Highly focused supersonic microjets. arXiv:1112.2517 (2011) (accessed July 16, 2012)

    Google Scholar 

  39. Peters, I.R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D., van der Meer, D.: Highly focused supersonic microjets: numerical simulations. arXiv:1203.5029v1 (2012)(accessed July 16, 2012)

    Google Scholar 

  40. Lauterborn, W., Hentschel, W.: Cavitation bubble dynamics studied by high speed photography and holography: part one. Ultrasonics 23, 260–268 (1985)

    Article  Google Scholar 

  41. Lauterborn, W., Kurz, T., Mettin, R., Ohl, C.D.: Experimental and theoretical bubble dynamics. In: Prigogine, I., Rice, S.A. (eds.) Advances in Chemical Physics, pp. 295–380. John Wiley & Sons (2007)

    Google Scholar 

  42. Vogel, A., Schweiger, P., Frieser, A., Asiyo, M.N., Birngruber, R.: Intraocular Nd: YAG laser surgery: laser-tissue interaction, damage range, and reduction of collateral effects. IEEE J. Quantum Electron. 26, 2240–2260 (1990)

    Article  Google Scholar 

  43. Philipp, A., Lauterborn, W.: Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116 (1998)

    Article  MATH  Google Scholar 

  44. Tomita, Y., Shima, A., Takahashi, K.: The collapse of a gas bubble attached to a solid wall by a shock-wave and the induced impact pressure. J. Fluids Eng. Trans. ASME 105, 341–349 (1983)

    Article  Google Scholar 

  45. Shima, A., Tomita, Y., Sugiu, T.: Impulsive pressure generation by bubble pressure-wave interaction. AIAA J. 26, 434–437 (1988)

    Article  Google Scholar 

  46. Chen, Y.H., Chu, H.Y., Lin, I.: Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap. Phys. Rev. Lett. 96(034505) (2006)

    Google Scholar 

  47. Chen, Y.H., Lin, I.: Dynamics of impacting a bubble by another pulsed-laser-induced bubble: Jetting, fragmentation, and entanglement. Phys. Rev. E 77, 026304 (2008)

    Article  Google Scholar 

  48. Tomita, Y., Shima, A.: High-speed photographic observations of laser-induced cavitation bubbles. Acustica 71, 161–171 (1990)

    Google Scholar 

  49. Tomita, Y., Shima, A., Sato, K.: Dynamic behavior of two laser-induced bubbles in water. Appl. Phys. Lett. 57, 234–236 (1990)

    Article  Google Scholar 

  50. Blake, J.R., Robinson, P.B., Shima, A., Tomita, Y.: Interaction of two cavitation bubbles with a rigid boundary. J. Fluid Mech. 255, 707–721 (1993)

    Article  Google Scholar 

  51. Jungnickel, K., Vogel, A.: Interaction of two laser-induced cavitation bubbles. In: Blake, J.R., et al. (eds.) Bubble Dynamics and Interface Phenomena, pp. 47–53. Kluwer, Dordrecht (1994)

    Chapter  Google Scholar 

  52. Testud-Giovanneschi, P., Alloncle, A.P., Dufresne, D.: Collective effects of cavitation: Experimental study of bubble-bubble and bubble-shock wave interactions. J. Appl. Phys. 67, 3560–3564 (1990)

    Article  Google Scholar 

  53. Quinto-Su, P.A., Huang, X.H., Gonzalez-Avila, S.R., Wu, T., Ohl, C.D.: Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys. Rev. Lett. 104, Art. No. 014501 (2010)

    Google Scholar 

  54. Huang, X., Quinto-Su, P.A., Gonzalez-Avila, S.R., Wu, T., Ohl, C.D.: Controlled manipulation and in situ mechanical measurement of single co nanowire with a laser-induced cavitation bubble. Nano. Lett. 10, 3846–3851 (2010)

    Article  Google Scholar 

  55. Quinto-Su, P.A., Ohl, C.D.: Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. J. Fluid Mech. 633, 425–435 (2009)

    Article  MATH  Google Scholar 

  56. Quinto-Su, P.A., Venugopalan, V., Ohl, C.D.: Generation of laser-induced cavitation bubbles with a digital hologram. Opt. Express 16, 18964–18969 (2008)

    Article  Google Scholar 

  57. Quinto-Su, P.A., Ohl, C.D.: Bubble cluster explosion. Phys. Fluids 22, Art. No. 091109 (2010)

    Google Scholar 

  58. Toytman, I., Silbergleit, A., Simanovski, D., Palanker, D.: Multifocal laser surgery: Cutting enhancement by hydrodynamic interactions between cavitation bubbles. Phys. Rev. E 82, Art. No. 046313 (2010)

    Google Scholar 

  59. Tinne, N., Schumacher, S., Nuzzo, V., Arnold, C.L., Lubatschowski, H., Ripken, T.: Interaction dynamics of spatially separated cavitation bubbles in water. J. Biomed. Opt. 15, Art. No. 068003 (2010)

    Google Scholar 

  60. Sankin, G.N., Yuan, F., Zhong, P.: Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys. Rev. Lett. 105, Art. No. 078101 (2010)

    Google Scholar 

  61. Ohl, C.D.: Aiming with bubbles. Physics 3, Art. No. 65 (2010)

    Google Scholar 

  62. Lautz, J., Sankin, G., Yuan, F., Zhong, P.: Displacement of particles in micro-fluidics by laser-generated tandem bubbles. Appl. Phys. Lett. 97, 183701–183703 (2010)

    Article  Google Scholar 

  63. Yuan, F., Sankin, G., Zhong, P.: Dynamics of tandem bubble interaction in a microfluidic channel. J. Acoust. Soc. Am. 130, 3339–3346 (2011)

    Article  Google Scholar 

  64. Fong, S.W., Adhikari, D., Klaseboer, E., Khoo, B.C.: Interaction of multiple spark generated bubbles with phase differences. Exp. Fluids 46, 705–724 (2009)

    Article  Google Scholar 

  65. Sokolov, D.L., Bailey, M.R., Crum, L.A.: Use of a dual-pulse lithotripter to generate a localized and intensified cavitation field. J. Acoust. Soc. Am. 110, 1685–1695 (2001)

    Article  Google Scholar 

  66. Loske, A.M., Prieto, F.E., Fernandez, F., van Cauwelaert, J.: Tandem shock wave cavitation enhancement for extracorporeal lithotripsy. Phys. Med. Biol. 47, 3945–3957 (2002)

    Article  Google Scholar 

  67. Arora, M., Junge, L., Ohl, C.D.: Cavitation cluster dynamics in shock-wave lithotripsy: Part 1. Free field. Ultrasound Med. Biol. 31, 827–839 (2005)

    Article  Google Scholar 

  68. Hall, T.L., Hempel, C.R., Wojno, K., Xu, Z., Cain, C.A., Roberts, W.W.: Histo-tripsy of the Prostate: Dose Effects in a Chronic Canine Model. Urology 74, 932–937 (2009)

    Article  Google Scholar 

  69. Maxwell, A.D., Wang, T.Y., Cain, C.A., Fowlkes, J.B., Sapozhnikov, O.A., Bailey, M.R., Xu, Z.: Cavitation clouds created by shock scattering from bubbles during histotripsy. J. Acoust. Soc. Am. 130, 1888–1898 (2011)

    Article  Google Scholar 

  70. Sankin, G.N., Simmons, W.N., Zhu, S.L., Zhong, P.: Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95, Art. No. 034501 (2005)

    Google Scholar 

  71. Staudenraus, J., Eisenmenger, W.: Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonics 31, 267–273 (1993)

    Article  Google Scholar 

  72. Klaseboer, E., Fong, S.W., Turangan, C.K., Khoo, B.C., Szeri, A.J., Calvisi, M.L., Sankin, G.N., Zhong, P.: Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 33–56 (2007)

    Article  MATH  Google Scholar 

  73. Biescheuvel, A., van Wijngaarden, L.: Two-phase flow equations for a dilute dispersion of gas bubble in liquid. J. Fluid Mech. 148, 301–318 (1984)

    Article  Google Scholar 

  74. Zhang, D., Prosperetti, A.: Ensemble phase-averaged equations for bubbly flow. Phys. Fluids 6, 2956–2970 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  75. Tanguay, M.: Computation of bubbly cavitating flow in shock wave lithotripsy. Dissertation. California Institute of Technology (2004)

    Google Scholar 

  76. Ando, K.: Effects of polydispersity in bubbly flows. Dissertation. California Institute of Technology (2010)

    Google Scholar 

  77. Fuster, D., Colonius, T.: Modelling bubble clusters in compressible liquids. J. Fluid Mech. 688, 352–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  78. Arora, M., Ohl, C.D., Lohse, D.: Effect of nuclei concentration on cavitation cluster dynamics. J. Acoust. Soc. Am. 121, 3432–3436 (2007)

    Article  Google Scholar 

  79. Liebler, M., Dreyer, T., Riedlinger, R.E.: Modeling of interaction between therapeutic ultrasound propagation and cavitation bubbles. Ultrasonics 44(suppl.), e319–e324 (2006)

    Google Scholar 

  80. Ikeda, T., Yoshizawa, S., Tosaki, M., Allen, J.S., Takagi, S., Ohta, N., Kitamura, T., Matsumoto, Y.: Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound Med. Biol. 32, 1383–1397 (2006)

    Article  Google Scholar 

  81. Xu, Z., Ludomirsky, A., Eun, L.Y., Hall, T.L., Tran, B.C., Fowlkes, J.B., Cain, C.A.: Controlled Ultrasound Tissue Erosion. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 51, 726–736 (2004)

    Article  Google Scholar 

  82. Metten, B., Lauterborn, W.: Molecular dynamics approach to single-bubble sonoluminescence. In: Lauterborn, W., Kurz, T. (eds.) Nonlinear Acoustics at the Turn of the Millennium, Amer. Inst. Physics, Melville, pp. 429–432 (2000)

    Google Scholar 

  83. Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73, Art. No. 106501 (2010)

    Google Scholar 

  84. Matsumoto, M., Miyamoto, K., Ohguchi, K., Kinjo, T.: molecular dynamics simulation of a collapsing bubble. Prog. Theor. Phys. 138(Suppl.), 728–729 (2000)

    Google Scholar 

  85. Ruuth, S.J., Putterman, S., Merriman, B.: Molecular dynamics simulation of the response of a gas to a spherical piston: Implications for sonoluminescence. Phys. Rev. E 66, Art. No. 036310 (2002)

    Google Scholar 

  86. Holyst, R., Litniewski, M., Garstecki, P.: Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave. Phys. Rev. E 85, Art. No. 056303 (2012)

    Google Scholar 

  87. Vedadi, M., Choubey, A., Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P., van Duin, A.C.T.: Structure and dynamics of shock-induced nanobubble collapse in water. Phys. Rev. Lett. 105, Art. No. 014503 (2010)

    Google Scholar 

  88. van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W.A.: ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Dieter Ohl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohl, CD., Ohl, SW. (2013). Shock Wave Interaction with Single Bubbles and Bubble Clouds. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_1

Download citation

Publish with us

Policies and ethics