Skip to main content

MaxD K-Means: A Clustering Algorithm for Auto-generation of Centroids and Distance of Data Points in Clusters

  • Conference paper
Computational Intelligence and Intelligent Systems (ISICA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 316))

Included in the following conference series:

Abstract

K-Means is one of the unsupervised learning and partitioning clustering algorithms. It is very popular and widely used for its simplicity and fastness. The main drawback of this algorithm is that user should specify the number of cluster in advance. As an iterative clustering strategy, K-Means algorithm is very sensitive to the initial starting conditions. In this paper, we propose a clustering technique called MaxD K-Means clustering algorithm. MaxD K-Means algorithm auto generates initial k (the desired number of cluster) without asking for input from the user. MaxD K-means also used a novel strategy of setting the initial centroids. The experiment of the Max-D means has been conducted using synthetic data, which is taken from the Llyod’s K-Means experiments. The results from the new algorithm show that the number of iteration improves tremendously, and the number of iterations is reduced by confirming an improvement rate is up to 78%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhou, H., Liu, Y.: Accurate integration of multi-viewrange images using k-means clustering. Pattern Recognition 41, 152–175 (2008)

    Article  MATH  Google Scholar 

  2. Bandyopadhyay, S., Maulik, U.: An evolutionary technique based on K-Means algorithm for optimal clustering. Information Sciences 146, 221–237 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Herawan, T., Yanto, I.T.R., Deris, M.M.: Rough Set Approach for Categorical Data Clustering. In: Ślęzak, D., Kim, T.-h., Zhang, Y., Ma, J., Chung, K.-i. (eds.) DTA 2009. CCIS, vol. 64, pp. 179–186. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Yanto, I.T.R., Herawan, T., Deris, M.M.: Data clustering using Variable Precision Rough Set. Intelligent Data Analysis 15(4), 465–482 (2011)

    Google Scholar 

  5. Yanto, I.T.R., Vitasari, P., Herawan, T., Deris, M.M.: Applying Variable Precision Rough Set Model for Clustering Student Suffering Study’s Anxiety. Expert System with Applications 39(1), 452–459 (2012)

    Article  Google Scholar 

  6. Herawan, T., Yanto, I.T.R., Deris, M.M.: ROSMAN: ROugh Set approach for clustering supplier chain MANagement. International Journal of Biomedical and Human Sciences 16(2), 105–114 (2010)

    Google Scholar 

  7. Herawan, T., Deris, M.M., Abawajy, J.H.: A rough set approach for selecting clustering attribute. Knowledge Based Systems 23(3), 220–231 (2010)

    Article  Google Scholar 

  8. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley and Sons, New York (2001)

    MATH  Google Scholar 

  9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Spc. 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  10. McLachlan, G.L., Basford, K.E.: Mixture Models: Inference and Application to clustering. Marcel Dekker (1987)

    Google Scholar 

  11. Jiambo, S., Jitendra, M.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Machine Intell. 22, 288–905 (2000)

    Google Scholar 

  12. Stella, Y., Jianbo, S.: Multiclass spectral clustering. In: Proc. Internat. Conf. on Computer Vision, pp. 313–319 (2003)

    Google Scholar 

  13. Murino, L., Angelini, C., Feis, I.D., Raiconi, G., Tagliaferri, R.: Beyond classical consensus clustering: The least squares approach to multiple solutions. Pattern Recognition Letters 32, 1604–1612 (2011)

    Article  Google Scholar 

  14. Dunham, M.: Data Mining: Introductory and Advance Topics. N.J. Prentice Hall (2003)

    Google Scholar 

  15. Chiang, M., Tsai, C., Yang, C.: A time-efficient pattern reduction algorithm for k-means clustering. Information Sciences 181, 716–731 (2011)

    Article  Google Scholar 

  16. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transaction on Neural Netowrks 16(3), 645–678 (2005)

    Article  Google Scholar 

  17. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3) (1999)

    Google Scholar 

  18. Kanungo, T., Mount, D., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.: An efficient K-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  19. Likas, A., Vlassis, N., Verbeek, J.J.: The global K-means clustering algorithm. Pattern Recognition 36, 452–461 (2003)

    Article  Google Scholar 

  20. Charalampidis, D.: A modified K-means algorithm for circular invariant clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1856–1865 (2005)

    Article  Google Scholar 

  21. Selim, S.Z., Ismail, M.A.: K-means type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 6, 81–87 (1984)

    Article  MATH  Google Scholar 

  22. Spath, H.: Cluster Analysis Algorithms. Ellis Horwood, Chichester (1989)

    Google Scholar 

  23. Chang, D., Xian, D., Chang, W.: A genetic algorithm with gene rearrangement for K-means clustering. Pattern Recognition 42, 1210–1222 (2009)

    Article  Google Scholar 

  24. Otsubo, M., Sato, K., Yamaji, A.: Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering. Journal of Structural Geology 28, 991–997 (2006)

    Article  Google Scholar 

  25. Kalyani, S., Swarup, K.S.: Particle swarm optimization based K-means clustering approach for security assessment in power systems. Expert Systems with Applications 38, 10839–10846 (2011)

    Article  Google Scholar 

  26. Bagirov, A.M., Ugon, J., Webb, D.: Fast modified global k-means algorithm for incremental cluster construction. Pattern Recognition 44, 866–876 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohd, W.M.W., Beg, A.H., Herawan, T., Rabbi, K.F. (2012). MaxD K-Means: A Clustering Algorithm for Auto-generation of Centroids and Distance of Data Points in Clusters. In: Li, Z., Li, X., Liu, Y., Cai, Z. (eds) Computational Intelligence and Intelligent Systems. ISICA 2012. Communications in Computer and Information Science, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34289-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34289-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34288-2

  • Online ISBN: 978-3-642-34289-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics