Where to Hide the Bits ?

  • Benjamin Johnson
  • Pascal Schöttle
  • Rainer Böhme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7638)


We present a stochastic two-player zero-sum game between defender and attacker related to the security of practical steganography. The defender wants to hide a message in a cover object drawn by nature. The attacker wants to distinguish plain covers from those with a hidden message. We study the case of n-bit covers, independently but not identically distributed to allow for variation in the predictability between parts of the cover. The defender knows the predictability exactly and chooses k embedding positions. The attacker may obtain side information to predict one chosen position of the cover and compare it to the observed object to make a decision. We present a unique mixed strategy Nash equilibrium for this game. It turns out that the attacker’s strategy is independent of the number of hidden bits k.


Game Theory Information Hiding Steganography Security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böhme, R.: Advanced Statistical Steganalysis. Springer (2010)Google Scholar
  2. 2.
    Cachin, C.: An Information-Theoretic Model for Steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classification. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 99–108. ACM, New York (2004)Google Scholar
  4. 4.
    Filler, T., Judas, J., Fridrich, J.J.: Minimizing Embedding Impact in Steganography Using Trellis-coded Quantization. In: Memon, N.D., Dittmann, J., Alattar, A.M., Delp, E.J. (eds.) Media Forensics and Security. SPIE Proceedings, vol. 7541, p. 754105. SPIE (2010)Google Scholar
  5. 5.
    Fridrich, J.: Minimizing the Embedding Impact in Steganography. In: Workshop on Multimedia and Security, pp. 2–10. ACM (2006)Google Scholar
  6. 6.
    Hopper, N.J., Langford, J., von Ahn, L.: Provably Secure Steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Katzenbeisser, S., Petitcolas, F.A.P.: Defining Security in Steganographic Systems. In: Delp, E.J., Wong, P.W. (eds.) Security, Steganography and Watermarking of Multimedia Contents IV, San Jose, CA, vol. 4675, pp. 50–56 (2002)Google Scholar
  8. 8.
    Ker, A.D.: The Square Root Law in Stegosystems with Imperfect Information. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 145–160. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Ker, A.D., Pevný, T., Kodovský, J., Fridrich, J.: The Square Root Law of Steganographic Capacity. In: MM&Sec 2008: Proceedings of the 10th ACM Workshop on Multimedia and Security, pp. 107–116. ACM, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Pevný, T., Filler, T., Bas, P.: Using High-Dimensional Image Models to Perform Highly Undetectable Steganography. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 161–177. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Schöttle, P., Böhme, R.: A Game-Theoretic Approach to Content-Adaptive Steganography. In: Ghosal, D., Kirchner, M. (eds.) Information Hiding. LNCS, Springer (to appear, 2012)Google Scholar
  12. 12.
    Wang, Y., Moulin, P.: Perfectly Secure Steganography: Capacity, Error Exponents, and Code Constructions. IEEE Transactions on Information Theory 54(6), 2706–2722 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benjamin Johnson
    • 1
  • Pascal Schöttle
    • 2
  • Rainer Böhme
    • 2
  1. 1.Department of MathematicsUC BerkeleyUSA
  2. 2.Department of Information SystemsUniversity of MünsterGermany

Personalised recommendations