Advertisement

Decomposition Equation of Basis Images with Consideration of Global Illumination

  • Xueying Qin
  • Rui Zhang
  • Lili Lin
  • Fan Zhong
  • Guanyu Xing
  • Qunsheng Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)

Abstract

In augmented reality, it is required to sense the changing of the light condition for achieving illumination consistency. In this paper, we build up the decomposition equation of basis images of static scenes for this purpose. It is proved that the basis images are invariants of the scene, which is the global illumination effects of a distributed light source with unit power, and it is unnecessary to assume that the reflectance of appearance of objects in scenes is ideal diffuse. Our method can also be applied in image understanding and compressing.

Keywords

basis image decomposition illumination invariants global illumination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kajiya, J.: The rendering equation. In: SIGGRAPH 1986 Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, vol. 20(4) (1986)Google Scholar
  2. 2.
    Liu, Y., Qin, X., Xu, S., Nakamae, E., Peng, Q.: Light source estimation of outdoor scenes for mixed reality. The Visual Computer: International Journal of Computer Graphics 25(5-7), 637–646 (2009)CrossRefGoogle Scholar
  3. 3.
    Barrow, H., Tenenbaum, J.: Recovering intrinsic scene characteristics fromimages. In: Computer Vision Systems (1978)Google Scholar
  4. 4.
    Matsushita, Y., Lin, S., Kang, S.B., Shum, H.-Y.: Estimating Intrinsic Images from Image Sequences with Biased Illumination. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part II. LNCS, vol. 3022, pp. 274–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. International Journal of Computer Vision, 7–23 (2003)Google Scholar
  6. 6.
    Tappen, M., Freeman, W., Adelson, E.: Recovering intrinsic images from a single image. In: Advances in Neural Information Processing Systems 15. MIT Press (2002)Google Scholar
  7. 7.
    Sunkavalli, K., Matusik, W., Pfister, H., Rusinkiewicz, S.: Factored time-lapse video. In: Proc. of SIGGRAPH, vol. 26(3), pp. 101–111 (2007)Google Scholar
  8. 8.
    Sunkavalli, K., Romeiro, F., Matusik, W., Zickler, T., Pfister, H.: What do color changes reveal about an outdoor scene? In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  9. 9.
    Tadamura, K., Nakamae, E., Kaneda, K., Baba, M., Yamashita, H., Nishita, T.: Modeling of Skylight and Rendering of Outdoor Scenes. Comput. Graph. Forum 12(3), 189–200 (1993)CrossRefGoogle Scholar
  10. 10.
    Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proc. of SIGGRAPH, pp. 369–378 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xueying Qin
    • 1
    • 2
  • Rui Zhang
    • 1
  • Lili Lin
    • 1
  • Fan Zhong
    • 1
  • Guanyu Xing
    • 3
  • Qunsheng Peng
    • 3
  1. 1.School of Computer Science and TechnologyShandong UniversityP.R. China
  2. 2.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingP.R. China
  3. 3.State Key Laboratory of CAD&CGZhejiang UniversityP.R. China

Personalised recommendations