Robust Place Recognition by Avoiding Confusing Features and Fast Geometric Re-ranking

  • Mingying Gong
  • Lifeng Sun
  • Shiqiang Yang
  • Yun Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)


There are millions of mobile phone applications based on location. Using a photo to precisely locate users location is useful and necessary. However, real-time location recognition or retrieval system is a challenging problem due to the really big differences between the query and the dataset in scale, viewpoint and lighting, or the noise existed in the foreground or background etc. To address this problem, we design a place recognition system and a new famous buildings dataset with ground truth labels. By adding a fast geometric image matching procedure before using RANSAC and applying a relative camera orientation calculation algorithm to filter the dataset collected from the Internet, we can substantially improve the efficiency of spatial verification and recognition accuracy.


Image Recognition Confusing Features Detection Geometric Verification Relative Camera Orientation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, Z., Sun, L., Yang, S.: Efficient relative camera orientation detection for mobile applications. In: Proceedings of the 1st International Workshop on Mobile Location-Based Service, pp. 53–62. ACM (2011)Google Scholar
  2. 2.
    Jacobs, N., Roman, N., Pless, R.: Toward fully automatic geo-location and geo-orientation of static outdoor cameras. In: IEEE Workshop on Applications of Computer Vision, WACV 2008, pp. 1–6. IEEE (2008)Google Scholar
  3. 3.
    Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. International Journal of Computer Vision 87(3), 316–336 (2010)CrossRefGoogle Scholar
  4. 4.
    Tsai, S., Chen, D., Takacs, G., Chandrasekhar, V., Vedantham, R., Grzeszczuk, R., Girod, B.: Fast geometric re-ranking for image-based retrieval. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 1029–1032. IEEE (2010)Google Scholar
  5. 5.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Zisserman, A., Arandjelovic, R.: Three things everyone should know to improve object retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2911–2918. IEEE (2012)Google Scholar
  7. 7.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  8. 8.
    Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from community photo collections. In: Proceedings of the 2008 International Conference on Content-Based Image and Video Retrieval, pp. 47–56. ACM (2008)Google Scholar
  9. 9.
    Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall ii: Query expansion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 889–896. IEEE (2011)Google Scholar
  10. 10.
    Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  11. 11.
    Knopp, J., Sivic, J., Pajdla, T.: Avoiding Confusing Features in Place Recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 748–761. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys (CSUR) 38(2), 6 (2006)CrossRefGoogle Scholar
  13. 13.
    Chum, O., Matas, J., Obdrzalek, S.: Enhancing ransac by generalized model optimization. In: Proc. of the ACCV, vol. 2, pp. 812–817 (2004)Google Scholar
  14. 14.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Snavely, N., Seitz, S., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008)CrossRefGoogle Scholar
  16. 16.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: Improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  17. 17.
    Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 1169–1176. IEEE (2009)Google Scholar
  18. 18.
    Jégou, H., Douze, M., Schmid, C.: Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Hartley, R.: In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(6), 580–593 (1997)CrossRefGoogle Scholar
  20. 20.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mingying Gong
    • 1
  • Lifeng Sun
    • 1
  • Shiqiang Yang
    • 1
  • Yun Yang
    • 1
  1. 1.Department of Computer Science and TechnologyTsinghua UniversityBeijingChina

Personalised recommendations