Efficient Spherical Parametrization Using Progressive Optimization

  • Shenghua Wan
  • Tengfei Ye
  • Maoqing Li
  • Hongchao Zhang
  • Xin Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)


Spherical mapping is a key enabling technology in modeling and processing genus-0 close surfaces. A closed genus-0 surface can be seamless parameterized onto a unit sphere. We develop an effective progressive optimization scheme to compute such a parametrization, minimizing a nonlinear energy balancing angle and area distortions. Among all existing state-of-the-art spherical mapping methods, the main advantage of our spherical mapping are two-folded: (1) the algorithm converges very efficiently, therefore it is suitable for handling huge geometric models, and (2) it generates bijective and lowly distorted mapping results.


Spherical Parametrization Hierarchical Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Friedel, I., Schröder, P., Desbrun, M.: Unconstrained spherical parameterization. In: SIGGRAPH Sketches (2005)Google Scholar
  2. 2.
    Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Proc. Symp. of Geometry Processing, pp. 127–137 (2003)Google Scholar
  3. 3.
    Hoppe, H.: Progressive meshes. In: SIGGRAPH, pp. 99–108 (1996)Google Scholar
  4. 4.
    Hormann, K., Greiner, G.: Mips: An efficient global parametrization method. In: Curve and Surface Design: Saint-Malo 1999, pp. 153–162 (2000)Google Scholar
  5. 5.
    Lee, D.T., Preparata, F.P.: An optimal algorithm for finding the kernel of a polygon. J. ACM 26(3), 415–421 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Li, X., Bao, Y., Guo, X., Jin, M., Gu, X., Qin, H.: Globally optimal surface mapping for surfaces with arbitrary topology. IEEE Trans. on Visualization and Computer Graphics 14(4), 805–819 (2008)CrossRefGoogle Scholar
  7. 7.
    Li, X., He, Y., Gu, X., Qin, H.: Curves-on-surface: A general shape comparison framework. In: Proc. IEEE International Conf. on Shape Modeling and Applications, pp. 352–357 (2006)Google Scholar
  8. 8.
    Nocedal, J., Wright, S.J.: Numerical Optimization (2006)Google Scholar
  9. 9.
    Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Trans. Graph. 22, 340–349 (2003)CrossRefGoogle Scholar
  10. 10.
    Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: SIGGRAPH, pp. 409–416 (2001)Google Scholar
  11. 11.
    Zayer, R., Rossl, C., Seidel, H.P.: Curvilinear spherical parameterization. In: Proc. IEEE International Conf. on Shape Modeling and Applications (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shenghua Wan
    • 1
  • Tengfei Ye
    • 2
  • Maoqing Li
    • 2
  • Hongchao Zhang
    • 3
  • Xin Li
    • 1
  1. 1.School of Electrical Engineering and Computer ScienceLouisiana State University (LSU)Baton RougeUSA
  2. 2.Department of AutomationXiamen UniversityXiamenChina
  3. 3.Department of MathematicsLSUBaton RougeUSA

Personalised recommendations