Modeling Residential Urban Areas from Dense Aerial LiDAR Point Clouds

  • Qian-Yi Zhou
  • Ulrich Neumann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)


We present an automatic system to reconstruct 3D urban models for residential areas from aerial LiDAR scans. The key difference between downtown area modeling and residential area modeling is that the latter usually contains rich vegetation. Thus, we propose a robust classification algorithm that effectively classifies LiDAR points into trees, buildings, and ground. The classification algorithm adopts an energy minimization scheme based on the 2.5D characteristic of building structures: buildings are composed of opaque skyward roof surfaces and vertical walls, making the interior of building structures invisible to laser scans; in contrast, trees do not possess such characteristic and thus point samples can exist underneath tree crowns. Once the point cloud is successfully classified, our system reconstructs buildings and trees respectively, resulting in a hybrid model representing the 3D urban reality of residential areas.


Point Cloud Residential Area Building Structure Tree Crown Aerial Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE PAMI (2001) 5Google Scholar
  2. 2.
    Chen, G., Zakhor, A.: 2d tree detection in large urban landscapes using aerial lidar data. In: IEEE ICIP (2009) 4Google Scholar
  3. 3.
    Côté, J.F., Widlowski, J.L., Fournier, R.A., Verstraete, M.M.: The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sensing of Environment (2009) 4Google Scholar
  4. 4.
    Lafarge, F., Descombes, X., Zerubia, J., Pierrot-Deseilligny, M.: Building reconstruction from a single dem. In: CVPR (2008) 2, 3Google Scholar
  5. 5.
    Lafarge, F., Mallet, C.: Building large urban environments from unstructured point data. In: ICCV (2011) 2, 4, 5Google Scholar
  6. 6.
    Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D., Chen, B.: Texture-lobes for tree modelling. In: ACM SIGGRAPH (2011) 4Google Scholar
  7. 7.
    Lodha, S.K., Fitzpatrick, D.M., Helmbold, D.P.: Aerial lidar data classification using adaboost. In: 3DIM (2007) 4Google Scholar
  8. 8.
    Matei, B., Sawhney, H., Samarasekera, S., Kim, J., Kumar, R.: Building segmentation for densely built urban regions using aerial lidar data. In: CVPR (2008) 2, 3, 4Google Scholar
  9. 9.
    Neubert, B., Franken, T., Deussen, O.: Approximate image-based tree-modeling using particle flows. In: ACM SIGGRAPH (2007) 4Google Scholar
  10. 10.
    Poullis, C., You, S.: Automatic reconstruction of cities from remote sensor data. In: CVPR (2009) 2, 3, 4Google Scholar
  11. 11.
    Secord, J., Zakhor, A.: Tree detection in urban regions using aerial lidar and image data. IEEE Geoscience and Remote Sensing Letters (2007) 4Google Scholar
  12. 12.
    Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L.: Single image tree modeling. ACM SIGGRAPH Asia (2008) 4Google Scholar
  13. 13.
    Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. In: ACM SIGGRAPH (2007) 4Google Scholar
  14. 14.
    Toshev, A., Mordohai, P., Taskar, B.: Detecting and parsing architecture at city scale from range data. In: CVPR (2010) 3, 4Google Scholar
  15. 15.
    Verma, V., Kumar, R., Hsu, S.: 3d building detection and modeling from aerial lidar data. In: CVPR (2006) 2, 3, 4Google Scholar
  16. 16.
    Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. (2007) 4Google Scholar
  17. 17.
    Zebedin, L., Bauer, J., Karner, K., Bischof, H.: Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 873–886. Springer, Heidelberg (2008) 3CrossRefGoogle Scholar
  18. 18.
    Zhou, Q.Y., Neumann, U.: A streaming framework for seamless building reconstruction from large-scale aerial lidar data. In: CVPR (2009) 2, 3, 4Google Scholar
  19. 19.
    Zhou, Q.-Y., Neumann, U.: 2.5D Dual Contouring: A Robust Approach to Creating Building Models from Aerial LiDAR Point Clouds. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 115–128. Springer, Heidelberg (2010) 2, 4, 6CrossRefGoogle Scholar
  20. 20.
    Zhou, Q.Y., Neumann, U.: 2.5d building modeling with topology control. In: CVPR (2011) 2, 4Google Scholar
  21. 21.
    Zhou, Q.Y., Neumann, U.: 2.5d building modeling by discovering global regularities. In: CVPR (2012) 2, 4Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qian-Yi Zhou
    • 1
  • Ulrich Neumann
    • 1
  1. 1.University of Southern CaliforniaUSA

Personalised recommendations