Advertisement

Mesh Segmentation for Parallel Decompression on GPU

  • Jieyi Zhao
  • Min Tang
  • Ruofeng Tong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)

Abstract

We present a novel algorithm to partition large 3D meshes for GPU-based decompression. Our formulation focuses on minimizing the replicated vertices between patches, and balancing the numbers of faces of patches for efficient parallel computing. First we generate a topology model of the original mesh and remove vertex positions. Then we assign the centers of patches using geodesic farthest point sampling and cluster the faces according to geodesic distance. After the segmentation we swap boundary faces to fix jagged boundaries and store the boundary vertices for whole-mesh preservation. The decompression of each patch runs on a thread of GPU, we have evaluated its performance on various large benchmarks. In practice, the GPU-based decompression algorithm runs more than 48X faster with that on the CPU.

Keywords

Parallel decompression Mesh segmentation Connectivity compression GPU Edgebreaker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrew, A.M.: Level set methods and fast marching methods. Robotica 18(1), 89–92 (2000)CrossRefGoogle Scholar
  2. 2.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gurung, T., Luffel, M., Lindstrom, P., Rossignac, J.: Lr: compact connectivity representation for triangle meshes. ACM Transactions on Graphics (TOG) 30 (2011)Google Scholar
  4. 4.
    Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In: Nguyen, H. (ed.) GPU Gems 3, ch. 39, pp. 851–876. Addison Wesley (August 2007)Google Scholar
  5. 5.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)CrossRefGoogle Scholar
  6. 6.
    Lavoué, G., Dupont, F., Baskurt, A.: A new cad mesh segmentation method, based on curvature tensor analysis. Computer-Aided Design 37(10), 975–987 (2005)CrossRefGoogle Scholar
  7. 7.
    Mitra, N.J., Guibas, L.J., Pauly, M.: Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25(3), 560–568 (2006)CrossRefGoogle Scholar
  8. 8.
    Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vision 69(1), 145–156 (2006)CrossRefGoogle Scholar
  9. 9.
    Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Transactions on Visualization and Computer Graphics 5, 84–115 (1998)Google Scholar
  10. 10.
    Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A.G., Seidel, H.-P.: Feature sensitive mesh segmentation with mean shift. In: SMI, pp. 238–245 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jieyi Zhao
    • 1
  • Min Tang
    • 1
  • Ruofeng Tong
    • 1
  1. 1.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations