Skip to main content

Surface Structure Analysis with X-Ray Standing Waves

  • Chapter
Surface Science Techniques

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 51))

Abstract

The most common and important application of the X-ray standing-wave technique is the analysis of surface adsorbates. Structural analysis can be performed element and even chemical species specific with high spatial resolution. The technique allows the investigation of low surface coverage and does not require long range order. In the present review I will present some examples. The fundamental principles and some variations of the technique and the experimental requirements are presented briefly. The quality and quantity of the information obtained from standing-wave measurements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The generalization is straight forward, but does not aid the understanding.

  2. 2.

    However, the Cu is not located exclusively on the surface, but sub-monolayer amounts of Cu diffuse into the GaAs interface region up to a depth of several nm [40].

References

  1. B.W. Batterman, Phys. Rev. 133, A759 (1964)

    Article  ADS  Google Scholar 

  2. J. Zegenhagen, Surf. Sci. Rep. 18, 199 (1993)

    Article  ADS  Google Scholar 

  3. G.C. La Rocca, J. Zegenhagen, Phys. Rev. B 44, 13666 (1991)

    Article  ADS  Google Scholar 

  4. P.L. Cowan, J.A. Golovchenko, M.F. Robbins, Phys. Rev. Lett. 44, 1680 (1980)

    Article  ADS  Google Scholar 

  5. G. Materlik, J. Zegenhagen, Phys. Lett. A 104, 47 (1984)

    Article  ADS  Google Scholar 

  6. S.M. Durbin, L.E. Berman, B.W. Batterman, J.M. Blakeley, J. Vac. Sci. Technol. A 3, 973 (1985)

    Article  ADS  Google Scholar 

  7. P. Funke, G. Materlik, Solid State Commun. 54, 921 (1985)

    Article  ADS  Google Scholar 

  8. J.R. Patel, P.E. Freeland, J.A. Golovchenko, A.R. Kortan, D.J. Chadi, G.-X. Quian, Phys. Rev. Lett. 57, 3077 (1986)

    Article  ADS  Google Scholar 

  9. T. Ohta, Y. Kitajima, H. Kuroda, T. Takahashi, S. Kikuta, Nucl. Instrum. Methods A 246, 760 (1986)

    Article  ADS  Google Scholar 

  10. J.A. Golovchenko, J.R. Patel, D.R. Kaplan, P.L. Cowan, M.J. Bedzyk, Phys. Rev. Lett. 49, 560 (1982)

    Article  ADS  Google Scholar 

  11. N. Hertel, G. Materlik, J. Zegenhagen, Z. Phys. B 58, 199 (1985)

    Article  ADS  Google Scholar 

  12. G. Materlik, J. Zegenhagen, W. Uelhoff, Phys. Rev. B 32, 5502 (1985)

    Article  ADS  Google Scholar 

  13. T. Ohta, H. Sekiyama, Y. Kitajima, H. Kuroda, T. Takahashi, S. Kikuta, Jpn. J. Appl. Phys. 24, L475 (1985)

    Article  ADS  Google Scholar 

  14. T. Ohta, Y. Kitajima, H. Kuroda, T. Takahashi, S. Kikuta, Nucl. Instrum. Methods A 246, 760 (1986)

    Article  ADS  Google Scholar 

  15. D.P. Woodruff, D.L. Seymour, C.F. McConville, C.E. Riley, M.D. Crapper, N.P. Prince, R.G. Jones, Phys. Rev. Lett. 58, 1460 (1987)

    Article  ADS  Google Scholar 

  16. M.J. Bedzyk, D.H. Bilderback, G.M. Bommarito, M. Caffrey, J.S. Schildkraut, Science 241, 1788 (1988)

    Article  ADS  Google Scholar 

  17. SXR = synchrotron x-radiation, PWG = plane wave generator, MC = monocromator crystal, XPS = X-ray photoelectron spectroscopy

    Google Scholar 

  18. J. Zegenhagen, B. Detlefs, T.-L. Lee, S. Thiess, H. Isern, L. Petit, L. André, J. Roy, Y. Mi, I. Joumard, J. Electron Spectrosc. Relat. Phenom. 178–179, 258 (2010)

    Article  Google Scholar 

  19. T.L. Lee, C. Bihler, W. Schoch, J. Daeubler, S. Thiess, M.S. Brandt, J. Zegenhagen, Phys. Rev. B 81, 235207 (2010)

    Article  ADS  Google Scholar 

  20. L. Cheng, P. Fenter, M.J. Bedzyk, N.C. Sturchio, Phys. Rev. Lett. 90, 255503 (2003)

    Article  ADS  Google Scholar 

  21. M. Sugiyama, S. Maeyama, M. Oshima, Phys. Rev. Lett. 71, 2611 (1993)

    Article  ADS  Google Scholar 

  22. M. Sugiyama, S. Maeyama, S. Heun, M. Oshima, Phys. Rev. B 51, 14778 (1995)

    Article  ADS  Google Scholar 

  23. G.J. Jackson, J. Ludecke, D.P. Woodruff, A.S.Y. Chan, N.K. Singh, J. McCombie, R.G. Jones, B.C.C. Cowie, V. Formoso, Surf. Sci. 441, 515 (1999)

    Article  ADS  Google Scholar 

  24. M. Drakopoulos, J. Zegenhagen, A. Snigirev, I. Snigireva, M. Hauser, K. Eberl, V.V. Aristov, L. Shabelnikov, V. Yunkin, Appl. Phys. Lett. 81, 2279 (2002)

    Article  ADS  Google Scholar 

  25. M.v. Laue, Röntgenstrahl-Interferenzen (Akademische Verlagsgesellschaft, Becker & ErlerKolm.-Ges, Leipzig, 1941) (Akademische Verlagsgesellschaft, Frankfurt, 1960)

    Google Scholar 

  26. B. Batterman, H. Cole, Rev. Mod. Phys. 36, 681 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Authier, Dynamical Theory of X-Ray Diffraction. IUCr Monographs on Crystallography, Oxford Science Publications (2001)

    Google Scholar 

  28. T.W. Barbee, W.K. Warburton, Mater. Lett. 3, 17 (1984)

    Article  Google Scholar 

  29. A. Einstein, Ann. Phys. 17, 132 (1905)

    Article  MATH  Google Scholar 

  30. In the dipole approximation, the exponential \(e^{2\pi i \mathbf{kr}}\) of the E-field operator in the Matrix element, describing the photoelectric process, is simply replaced by 1, the first term of its corresponding representation in a Taylor series (1+2πi k rπ 2(kr)2−⋯)

    Google Scholar 

  31. K. Siegbahn, Nucl. Instrum. Methods Phys. Res. A 547, 1 (2005)

    Article  ADS  Google Scholar 

  32. I.A. Vartanyants, J. Zegenhagen, Solid State Commun. 113, 299 (1999)

    Article  ADS  Google Scholar 

  33. I.A. Vartanyants, T.L. Lee, S. Thiess, J. Zegenhagen, Nucl. Instrum. Methods Phys. Res. A 547, 196 (2005)

    Article  ADS  Google Scholar 

  34. I.A. Vartanyants, J. Zegenhagen, Nuovo Cimento 19 D, 617 (1997)

    Article  ADS  Google Scholar 

  35. M.B. Trzhaskovskaya, V.K. Nikulin, V.I. Nefedov, V.G. Yarzhemsky, At. Data Nucl. Data Tables 92, 245 (2006)

    Article  ADS  Google Scholar 

  36. D.P. Woodruff, Nucl. Instrum. Methods Phys. Res. A 547, 187 (2005)

    Article  ADS  Google Scholar 

  37. N. Hertel, G. Materlik, J. Zegenhagen, Z. Phys. B, Condens. Matter 58, 199 (1985)

    Article  ADS  Google Scholar 

  38. J. Zegenhagen, F.U. Renner, A. Reitzle, T.L. Lee, S. Warren, A. Stierle, H. Dosch, G. Scherb, B.O. Fimland, D.M. Kolb, Surf. Sci. 573, 67 (2004)

    Article  ADS  Google Scholar 

  39. J. Zegenhagen, T.L. Lee, Y. Gründer, F. Renner, B.O. Fimland, Z. Phys. Chem. 221, 1273 (2007)

    Article  Google Scholar 

  40. G. Scherb, A. Kazimirov, J. Zegenhagen, T.L. Lee, M.J. Bedzyk, H. Noguchi, K. Uosaki, Phys. Rev. B 58, 10800 (1998)

    Article  ADS  Google Scholar 

  41. T.L. Lee, S. Warren, B.C.C. Cowie, J. Zegenhagen, Phys. Rev. Lett. 96, 046103 (2006)

    Article  ADS  Google Scholar 

  42. J.S. Pedersen, R. Feidenhans’l, M. Nielsen, K. Kjaer, F. Grey, R.L. Johnson, Surf. Sci. 189, 1047 (1987)

    Article  ADS  Google Scholar 

  43. M. Gothelid, M. Hammar, C. Tornevik, U.O. Karlsson, N.G. Nilsson, S.A. Flodstrom, Surf. Sci. 271, L357 (1992)

    Article  Google Scholar 

  44. O. Bunk, J.H. Zeysing, G. Falkenberg, R.L. Johnson, M. Nielsen, M.M. Nielsen, R. Feidenhans’l, Phys. Rev. Lett. 83, 2226 (1999)

    Article  ADS  Google Scholar 

  45. J. Avila, A. Mascaraque, E.G. Michel, M.C. Asensio, G. LeLay, J. Ortega, R. Perez, F. Flores, Phys. Rev. Lett. 82, 442 (1999)

    Article  ADS  Google Scholar 

  46. D. Farias, W. Kaminski, J. Lobo, J. Ortega, E. Hulpke, R. Perez, F. Flores, E.G. Michel, Phys. Rev. Lett. 91, 016103 (2003)

    Article  ADS  Google Scholar 

  47. A. Tejeda, R. Cortés, J. Lobo-Checa, C. Didiot, B. Kierren, D. Malterre, E.G. Michel, A. Mascaraque, Phys. Rev. Lett. 100, 026103 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Zegenhagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zegenhagen, J. (2013). Surface Structure Analysis with X-Ray Standing Waves. In: Bracco, G., Holst, B. (eds) Surface Science Techniques. Springer Series in Surface Sciences, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34243-1_9

Download citation

Publish with us

Policies and ethics