Skip to main content

X-Ray Reflectivity

  • Chapter

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 51))

Abstract

The basic principles of X-ray specular reflectivity are presented starting with the definition of the index of refraction of a material for X-rays. Applying the boundary conditions to the electric field and its derivative, one can express the reflectivity of a surface with respect to the incident angle and the index of refraction. This naturally yields the so-called Fresnel reflectivity valid for flat surfaces. The reflectivity of more complex structures such as thin layers deposited on a substrate or multilayers can be handled by the matrix technique that is then developed. The influence of interface roughness is described. When some approximations concerning refraction and multiple reflections at interfaces are made, one can extract from the so-called kinematical Born approximation a master formula which can be used for low electron density films. Experimental conditions are then discussed before finishing this chapter by a presentation of X-ray reflectivity by selected samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Fresnel, Mém. Acad. 11, 393 (1823)

    Google Scholar 

  2. M. Von Laue, Nobel Lecture, November 12, 1915

    Google Scholar 

  3. A.H. Compton, Philos. Mag. 45, 1121 (1923)

    Article  Google Scholar 

  4. R. Forster, Helv. Phys. Acta 1, 18 (1927)

    Google Scholar 

  5. J.A. Prins, Z. Phys. 47, 479 (1928)

    Article  ADS  Google Scholar 

  6. H. Kiessig, Ann. Phys. 10, 715 (1931)

    Article  Google Scholar 

  7. F. Abelès, Ann. de Physique 5, 596 (1950)

    MATH  Google Scholar 

  8. L.G. Parrat, Phys. Rev. 95, 359 (1954)

    Article  ADS  Google Scholar 

  9. R.W. James, The Optical Principles of the Diffraction of X-Rays (Bell, London, 1967)

    Google Scholar 

  10. L. Névot, P. Croce, Rev. Phys. Appl. 15, 761 (1980)

    Article  Google Scholar 

  11. S.K. Sinha, E.B. Sirota, S. Garoff, H.B. Stanley, Phys. Rev. B 38, 2297 (1988)

    Article  ADS  Google Scholar 

  12. B. Vidal, P. Vincent, Appl. Opt. 23, 1794 (1984)

    Article  ADS  Google Scholar 

  13. R. Petit, Ondes Electromagnétiques en Radioélectricité et en Optique (Masson, Paris, 1989)

    Google Scholar 

  14. J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves (Martinus Nijhoff, Dordrecht, 1987)

    Google Scholar 

  15. J. Daillant, A. Gibaud (eds.), X-Ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, 2009)

    Google Scholar 

  16. A. Gibaud, D. McMorrow, P.P. Swaddling, Phys. Condens. Matter 7, 2645–2654 (1995)

    Article  ADS  Google Scholar 

  17. A. Baptiste, A. Gibaud, J.F. Bardeau, W. Ke, R. Maoz, J. Sagiv, B. Ocko, Langmuir 18, 3916–3922 (2002)

    Article  Google Scholar 

  18. M. Maaza, A. Gibaud, C. Sella, B. Pardo, F. Dunsteter, J. Corno, F. Bridou, G. Vignaud, A. Désert, A. Ménelle, Eur. Phys. J. B 7, 339–345 (1999)

    Article  ADS  Google Scholar 

  19. A. Gibaud, S. Dourdain, G. Vignaud, Appl. Surf. Sci. 253, 3–11 (2006)

    Article  ADS  Google Scholar 

  20. P. Colombi, D.K. Agnihotri, V.E. Asadchikov, E. Bontempi, D.K. Bowen, C.H. Chang, L.E. Depero, M. Farnworth, T. Fujimoto, A. Gibaud, M. Jergel, M. Krumrey, T.A. Lafford, A. Lamperti, T. Ma, R.J. Matyi, M. Meduna, S. Milita, K. Sakurai, L. Shabel’nikov, A. Ulyanenkov, A. Van der Lee, C. Wiemer, Reproducibility in X-ray reflectometry: results from the first world-wide round robin experiment. J. Appl. Crystallogr. 41, 143–152 (2008)

    Article  Google Scholar 

  21. International Tables for Crystallography IV

    Google Scholar 

  22. J.W.S. Rayleigh, Proc. Roy. Soc. 86, 207 (1912)

    Article  ADS  MATH  Google Scholar 

  23. I.W. Hamley, J.S. Pederson, Appl. Cryst. 27, 29–35 (1994)

    Article  Google Scholar 

  24. J. Als-Nielsen, Z. Phys. B 61, 411 (1985)

    Article  ADS  Google Scholar 

  25. A. Gibaud, G. Vignaud, S.K. Sinha, Acta Cryst. A 49, 642–648 (1993)

    Article  Google Scholar 

  26. F. Venturini, S. Schöder, W.F. Kuhs, V. Honkimäki, L. Melesi, H. Reichert, H. Schober, F. Thomas, J. Synchrotron Radiat. 18, 251–256 (2011)

    Article  Google Scholar 

  27. M.K. Sanyal, S.K. Sinha, A. Gibaud, K.G. Huang, B.L. Carvalho, M. Rafailovich, J. Sokolov, X. Zhao, W. Zhao, Europhys. Lett. 21, 691 (1993)

    Article  ADS  Google Scholar 

  28. D. Vaknin, P. Kruger, M. Losche, Phys. Rev. Lett. 90, 178102 (2003)

    Article  ADS  Google Scholar 

  29. C. Park, P.A. Fenter, J. Appl. Crystallogr. 40, 290–301 (2007)

    Article  Google Scholar 

  30. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710–712 (1992)

    Article  ADS  Google Scholar 

  31. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990)

    Google Scholar 

  32. A. Gibaud, D. Grosso, B. Smarsly, A. Baptiste, J.F. Bardeau, F. Babonneau, D.A. Doshi, Z. Chen, C.J. Brinker, C. Sanchez, J. Phys. Chem. B 107, 6114–6118 (2003)

    Article  Google Scholar 

  33. A. Gibaud, M.J. Henderson, M. Colas, S. Dourdain, J.F. Bardeau, J.W. White, AZoNano 1 (2005) (Online Journal of Nanotechnology)

    Google Scholar 

  34. S. Dourdain, M. Colas, J.F. Bardeau, O. Gang, B. Ocko, A. Gibaud, Int. J. Nanosci. 4(5), 873–878 (2005)

    Article  Google Scholar 

  35. S. Dourdain, J.F. Bardeau, M. Colas, A. Mehdi, B. Smarsly, B. Ocko, A. Gibaud, Appl. Phys. Lett. 86, 113108 (2005)

    Article  ADS  Google Scholar 

  36. S. Dourdain, A. Gibaud, Appl. Phys. Lett. 87, 223105 (2005)

    Article  ADS  Google Scholar 

  37. M. Mattenet, K. Lhoste, O. Konovalov, S. Fall, B. Pattier, A. Gibaud, SRI-2009 Proc. 1234, 111–114 (2010)

    Google Scholar 

  38. M. Souheib Chebil, G. Vignaud, Y. Gorhens, O. Konovalov, M.K. Sanyal, T. Beuvier, A. Gibaud, Macromolecules 45, 6611–6617 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We express our deepest gratitude to our co-workers without whom this work could not have been performed: G. Vignaud, S. Dourdain, S. Fall, B. Pattier, M. Yan, J.F. Bardeau and O. Konovalov. The authors are grateful to synchrotron facilities (NSLS and ESRF) for access at beamlines X22b and ID10b respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gibaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gibaud, A., Chebil, M.S., Beuvier, T. (2013). X-Ray Reflectivity. In: Bracco, G., Holst, B. (eds) Surface Science Techniques. Springer Series in Surface Sciences, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34243-1_7

Download citation

Publish with us

Policies and ethics