Skip to main content

Grazing Incidence X-Ray Diffraction

  • Chapter

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 51))

Abstract

The principles of grazing incidence X-ray diffraction (GIXD) are discussed. A sample of a crystalline material is composed of a surface region including its top layer and a bulk part. The effect of the surface region on the intensity of surface X-ray diffraction cannot be generally disregarded. With the grazing configuration this small intensity is optimized and the structural parameters of surfaces, interfaces, and thin films can be determined through the comparison between the estimated, or experimental, and calculated structure factors. For the estimation, the experimental procedures to measure GIXD profiles around reciprocal lattice points with the necessary corrections are presented. A synchrotron X-ray source and diffractometers employed to perform GIXD experiments are briefly described. We conclude with two examples of systems investigated by means of GIXD: an electrochemical interface of Ag(1 0 0) and an epitaxial thin film of Bi4Ti3O12 grown on a TiO2 (1 0 1) single crystal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Since X-ray diffraction intensity is proportional to electron density, low atomic number elements are weak scatterers.

  2. 2.

    This sphere is superimposed on the reciprocal space of a crystal with a radius of 1/λ. An incident wave vector starts from the center of the sphere to the origin of the reciprocal space. The sphere is used for determining the directions in which an incident X-ray or other beam will be diffracted by the crystal.

  3. 3.

    GIXD patterns clearly showed the two-by periodicity of one-dimensional Bi nano lines buried in a Si (0 0 1) crystal.

  4. 4.

    While a sample crystal satisfies the Bragg condition for a forbidden reflection, diffraction does not occur because its structure factor is zero.

  5. 5.

    When an X-ray beam penetrates through a material, the intensity decreases with distance x in proportion to exp (−μx).

References

  1. W.C. Marra, P. Eisenberger, A.Y. Cho, J. Appl. Phys. 50, 6927 (1979)

    Article  ADS  Google Scholar 

  2. P. Eisenberger, W.C. Marra, Phys. Rev. Lett. 46, 1081 (1981)

    Article  ADS  Google Scholar 

  3. I.K. Robinson, Phys. Rev. Lett. 50, 1145 (1983)

    Article  ADS  Google Scholar 

  4. J. Bohr, R. Feidenhans’l, M. Nielsen, M. Toney, R.L. Johnson, I.K. Robinson, Phys. Rev. Lett. 54, 1275 (1985)

    Article  ADS  Google Scholar 

  5. I.K. Robinson, Phys. Rev. B 33, 3830 (1986)

    Article  ADS  Google Scholar 

  6. R. Feidenhans’l, Surf. Sci. Rep. 10, 105 (1989)

    Article  ADS  Google Scholar 

  7. G.H. Vineyard, Phys. Rev. B 26, 4146 (1982)

    Article  ADS  Google Scholar 

  8. S. Kishino, K. Kohra, Jpn. J. Appl. Phys. 10, 551 (1971)

    Article  ADS  Google Scholar 

  9. A.M. Afanas’ev, M.K. Melkonyan, Acta Crystallogr. A 39, 207 (1983)

    Article  Google Scholar 

  10. P.L. Cowan, Phys. Rev. B 32, 5437 (1985)

    Article  ADS  Google Scholar 

  11. O. Sakata, H. Hashizume, Rep. Res. Lab. Eng. Mat. Tokyo Inst. Tech. 12, 45 (1987)

    Google Scholar 

  12. O. Sakata, H. Hashizume, Acta Crystallogr. A 53, 781 (1997)

    Article  Google Scholar 

  13. B.E. Warren, X-ray Diffraction (Dover, New York, 1990), pp. 35–38

    Google Scholar 

  14. K.N. Trueblood et al., Acta Crystallogr. A 52, 770 (1996)

    Article  Google Scholar 

  15. I.K. Robinson, in Handbook on Synchrotron Radiation, vol. 3, ed. by G. Brown, D.E. Moncton (North-Holland, Amsterdam, 1991), p. 221

    Google Scholar 

  16. I.K. Robinson, D.J. Tweet, Rep. Prog. Phys. 55, 599 (1992)

    Article  ADS  Google Scholar 

  17. For example, J. Rius et al., Acta Crystallogr. A 52, 634 (1996)

    Article  Google Scholar 

  18. X. Torrelles et al., Phys. Rev. B 57, R4281 (1998)

    Article  ADS  Google Scholar 

  19. L.D. Marks et al., Surf. Rev. Lett. 4, 1 (1997)

    Article  ADS  Google Scholar 

  20. K. Sumitani et al., Jpn. J. Appl. Phys. 42, L189 (2003)

    Article  ADS  Google Scholar 

  21. D.K. Saldin et al., Comput. Phys. Commun. 137, 12 (2001)

    Article  ADS  MATH  Google Scholar 

  22. E. Vlieg, J. Appl. Crystallogr. 30, 532 (1997)

    Article  Google Scholar 

  23. E. Vlieg, J. Appl. Crystallogr. 31, 198 (1998)

    Article  Google Scholar 

  24. E. Vlieg, J. Appl. Crystallogr. 33, 401 (2000)

    Article  Google Scholar 

  25. M. Nakamura, M. Ito, Phys. Rev. Lett. 94, 035501 (2005)

    Article  ADS  Google Scholar 

  26. K.W. Evans-Lutterodt, M.-T. Tang, J. Appl. Crystallogr. 28, 318 (1995)

    Article  Google Scholar 

  27. O. Sakata et al., Surf. Rev. Lett. 10, 543 (2003)

    Article  ADS  Google Scholar 

  28. H. Kitamura, J. Synchrotron Radiat. 7, 121 (2000)

    Article  ADS  Google Scholar 

  29. T. Tanaka, H. Kitamura, J. Synchrotron Radiat. 8, 1221 (2001)

    Article  Google Scholar 

  30. T. Mochizuki et al., Nucl. Instrum. Methods A 467–468, 647 (2001)

    Article  Google Scholar 

  31. For example, P. Eisenberger, W.C. Marra, Phys. Rev. Lett. 46, 1081 (1981)

    Article  ADS  Google Scholar 

  32. S. Brennan, P. Eisenberger, Nucl. Instrum. Methods 222, 164 (1984)

    Article  Google Scholar 

  33. P.H. Fuoss, I.K. Robinson, Nucl. Instrum. Methods 222, 171 (1984)

    Article  Google Scholar 

  34. For example, J. Bohr et al., Phys. Rev. Lett. 54, 1275 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  35. O. Sakata, H. Hashizume, Acta Crystallogr. A 51, 375 (1995)

    Article  Google Scholar 

  36. O. Sakata et al., J. Synchrotron Radiat. 5, 1222 (1998)

    Article  Google Scholar 

  37. Ch. Brönnimann et al., Nucl. Instrum. Methods Phys. Res. A 510, 24 (2003)

    Article  ADS  Google Scholar 

  38. C.M. Schlepütz et al., Acta Crystallogr. A 61, 418 (2005)

    Article  ADS  Google Scholar 

  39. B.M. Ocko, J. Wang, A.J. Davenport, H.S. Isaacs, Phys. Rev. Lett. 65, 1466 (1990)

    Article  ADS  Google Scholar 

  40. J. Wang, A.J. Davenport, H.S. Isaacs, B.M. Ocko, Science 255, 1416 (1992)

    Article  ADS  Google Scholar 

  41. C.A. Lucas, N.M. Markovic, P.N. Ross, Phys. Rev. Lett. 77, 4922 (1996)

    Article  ADS  Google Scholar 

  42. J.O. Bockris, M.A.V. Devanathan, K. Muller, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 274, 55 (1963)

    Article  ADS  Google Scholar 

  43. D.C. Grahame, Chem. Rev. 41, 441 (1947)

    Article  Google Scholar 

  44. M. Nakamura, N. Sato, N. Hoshi, O. Sakata, ChemPhysChem 12, 1430 (2011)

    Article  Google Scholar 

  45. M.S. Altman, P.J. Estrup, I.K. Robinson, Phys. Rev. B 38, 5211 (1988)

    Article  ADS  Google Scholar 

  46. H. Reichert et al., Phys. B 336, 46 (2003)

    Article  ADS  Google Scholar 

  47. D.A. Kukuruznyak et al., Appl. Phys. Lett. 91, 071916 (2007)

    Article  ADS  Google Scholar 

  48. T. Matsushita et al., J. Phys. Conf. Ser. 83, 012021 (2007)

    Article  ADS  Google Scholar 

  49. T. Matsushita et al., Appl. Phys. Lett. 92, 024103 (2008)

    Article  ADS  Google Scholar 

  50. T. Matsushita et al., Eur. Phys. J. Spec. Top. 167, 113 (2009)

    Article  Google Scholar 

  51. H. Hong et al., Rev. Sci. Instrum. 71, 3132 (2000)

    Article  ADS  Google Scholar 

  52. H. Hong et al., Rev. Sci. Instrum. 73, 1720 (2002)

    Article  ADS  Google Scholar 

  53. O. Sakata et al., Appl. Phys. Lett. 84, 4239 (2004)

    Article  ADS  Google Scholar 

  54. O. Sakata et al., Phys. Rev. B 72, 121407(R) (2005)

    Article  ADS  Google Scholar 

  55. O. Sakata, M. Nakamura, Appl. Surf. Sci. 256, 1144 (2009)

    Article  ADS  Google Scholar 

  56. O. Sakata, T. Watanabe, H. Funakubo, J. Appl. Crystallogr. 44, 385 (2011)

    Article  Google Scholar 

  57. A. Shrinagar, A. Garg, R. Prasad, S. Auluck, Acta Crystallogr. A 64, 368 (2008)

    Article  ADS  Google Scholar 

  58. J.F. Dorrian, R. Newnham, D. Smith, M. Kay, Ferroelectrics 3, 17 (1972)

    Article  Google Scholar 

  59. A.D. Rae, J.G. Thompson, R.L. Withers, A.C. Wililis, Acta Crystallogr. B 46, 474 (1990)

    Article  Google Scholar 

  60. C.H. Hervoches, P. Lightfoot, Chem. Mater. 11, 3359 (1999)

    Article  Google Scholar 

  61. L.G. Paratt, Phys. Rev. 95, 359 (1954)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osami Sakata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sakata, O., Nakamura, M. (2013). Grazing Incidence X-Ray Diffraction. In: Bracco, G., Holst, B. (eds) Surface Science Techniques. Springer Series in Surface Sciences, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34243-1_6

Download citation

Publish with us

Policies and ethics