Skip to main content

Surface Characterization Using Atomic Force Microscopy (AFM) in Liquid Environments

  • Chapter
Surface Science Techniques

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 51))

Abstract

Liquid imaging provides intrinsic advantages for AFM experiments, particularly for conducting in situ studies of chemical or biochemical reactions. Using liquid media has benefits for improving resolution, since the amount of force applied between the tip and sample can be reduced. Surface changes caused by immersion in different liquids can be investigated, such as for studying electrochemical reactions with different parameters of solvent polarity, pH or ion concentration. Aqueous buffers enable studies of biochemical reactions that simulate physiological conditions, with time-lapse capture of image frames at different intervals. Studies of surface changes throughout the course of self-assembly reactions have been monitored with AFM in liquid media. By injecting new molecules into the sample cell, AFM-based nanofabrication can be accomplished by nanografting protocols. Liquid environments expand the capabilities for scanning probe studies to provide insight for dynamic processes at the molecular-level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Muller, A. Engel, Biophys. J. 73, 1633 (1997)

    ADS  Google Scholar 

  2. Y.L. Lyubchenko, L.S. Shlyakhtenko, Proc. Natl. Acad. Sci. USA 94, 496 (1997)

    ADS  Google Scholar 

  3. S. Scheuring, D. Müller, H. Stahlberg et al., Eur. Biophys. J. 31(3), 172 (2002)

    Google Scholar 

  4. T.J. Senden, C.J. Drummond, Colloids Surf. A 94, 29 (1995)

    Google Scholar 

  5. J.R. Kenseth, J.A. Harnisch, V.W. Jones et al., Langmuir 17, 4105 (2001)

    Google Scholar 

  6. R.M. Rynders, R.C. Alkier, J. Electrochem. Soc. 141, 1166 (1994)

    Google Scholar 

  7. Y. Lee, Z. Ding, A.J. Bard, Anal. Chem. 74, 3634 (2002)

    Google Scholar 

  8. S. Manne, P.K. Hansma, J. Massie et al., Science 251, 183 (1991)

    ADS  Google Scholar 

  9. S. Xu, S.J.N. Cruchon-Dupeyrat, J.C. Garno et al., J. Chem. Phys. 108(12), 5002 (1998)

    ADS  Google Scholar 

  10. J.-F. Liu, S. Cruchon-Dupeyrat, J.C. Garno et al., Nano Lett. 2, 937 (2002)

    ADS  Google Scholar 

  11. T.A. Land, J.J. DeYoreo, J.D. Lee, Surf. Sci. 384, 136 (1997)

    ADS  Google Scholar 

  12. S. Xu, G.-Y. Liu, Langmuir 13, 127 (1997)

    Google Scholar 

  13. P.K. Hansma, J.P. Cleveland, M. Radmacher et al., Appl. Phys. Lett. 64(13), 1738 (1994)

    ADS  Google Scholar 

  14. G. Binnig, H. Rohrer, Helv. Phys. Acta 55(6), 726 (1982)

    Google Scholar 

  15. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56(9), 930 (1986)

    ADS  Google Scholar 

  16. O. Marti, B. Drake, P.K. Hansma, Appl. Phys. Lett. 51(7), 484 (1987)

    ADS  Google Scholar 

  17. B. Drake, C.B. Prater, A.L. Weisenhorn et al., Science 243, 1586 (1989)

    ADS  Google Scholar 

  18. C.A. Bippes, D.J. Muller, Rep. Prog. Phys. 74, 086601 (2011)

    ADS  Google Scholar 

  19. Y.L. Lyubchenko, L.S. Shlyakhtenko, T. Ando, Methods 54, 274 (2011)

    Google Scholar 

  20. R. Erlandsson, G.M. McClelland, C.M. Mate et al., J. Vac. Sci. Technol. A 6, 266 (1988)

    ADS  Google Scholar 

  21. D.W. Abraham, C. Williams, J. Slinkman et al., J. Vac. Sci. Technol. B 9, 703 (1991)

    Google Scholar 

  22. H. Edwards, L. Taylor, W. Duncan et al., J. Appl. Phys. 82, 980 (1997)

    ADS  Google Scholar 

  23. F.J. Giessibl, Appl. Phys. Lett. 73, 3956 (1998)

    ADS  Google Scholar 

  24. M. Tortonese, R.C. Barrett, C.F. Quate, Appl. Phys. Lett. 62, 834 (1993)

    ADS  Google Scholar 

  25. S. Xu, P.E. Laibinis, G.Y. Liu, J. Am. Chem. Soc. 120(36), 9356 (1998)

    Google Scholar 

  26. M.E. Browning-Kelley, K. Wadu-Mesthrige, V. Hari et al., Langmuir 13, 343 (1997)

    Google Scholar 

  27. K. Schoenwald, Z.C. Peng, D. Noga et al., Rev. Sci. Instrum. 81, 053704 (2010)

    ADS  Google Scholar 

  28. W. Kiridena, V. Jain, P.K. Kuo et al., Surf. Interface Anal. 25, 383 (1997)

    Google Scholar 

  29. J.S. Jourdan, S.J. Cruchon-Dupeyrat, Y. Huan et al., Langmuir 15, 6495 (1999)

    Google Scholar 

  30. J.-R. Li, J.C. Garno, Nano Lett. 8, 1916 (2008)

    ADS  Google Scholar 

  31. C.M. Pina, C. Pimentel, M. Garcia-Merino, Surf. Sci. 604(21–22), 1877

    Google Scholar 

  32. S. Xu, S. Miller, P.E. Laibinis et al., Langmuir 15(21), 7244 (1999)

    Google Scholar 

  33. J.-J. Yu, Y. Horng Tan, X. Li et al., J. Am. Chem. Soc. 128, 11574 (2006)

    Google Scholar 

  34. C.A.J. Putman, K.O. VanderWerf, B.G. De Grooth et al., Appl. Phys. Lett. 64(18), 2454 (1994)

    ADS  Google Scholar 

  35. W. Han, S.M. Lindsay, T. Jing, Appl. Phys. Lett. 69, 4111 (1996)

    ADS  Google Scholar 

  36. A. Noy, C.H. Sanders, D.V. Vezenov et al., Langmuir 14, 1508 (1998)

    Google Scholar 

  37. W.J. Price, S.A. Leigh, S.M. Hsu et al., J. Phys. Chem. A 110, 1382 (2006)

    Google Scholar 

  38. T. Fukuma, K. Kobayashi, K. Matsushige et al., Appl. Phys. Lett. 86, 193108 (2005)

    ADS  Google Scholar 

  39. T. Fukuma, K. Kobayashi, K. Matsushige et al., Appl. Phys. Lett. 87(3) (2005)

    Google Scholar 

  40. S. Rode, N. Oyabu, K. Kobayashi et al., Langmuir 25(5), 2850 (2009)

    Google Scholar 

  41. H. Asakawa, T. Fukuma, Nanotechnology 20, 264008 (2009)

    ADS  Google Scholar 

  42. T. Fukuma, Jpn. J. Appl. Phys. 48, 08JA01 (2009)

    Google Scholar 

  43. A.L. Weisenhorn, P.K. Hansma, T.R. Albrecht et al., Appl. Phys. Lett. 54(26), 2651 (1989)

    ADS  Google Scholar 

  44. A.L. Weisenhorn, P. Maivald, H.-J. Butt et al., Phys. Rev. B 45, 11226 (1992)

    ADS  Google Scholar 

  45. H.-J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 59, 1 (2005)

    ADS  Google Scholar 

  46. J. Zlatanova, S.M. Lindsay, S.H. Leuba, Biphys. Molec. Biol. 74, 37 (2000)

    Google Scholar 

  47. C. Goldsbury, J. Kistler, U. Aebi et al., J. Mol. Biol. 285, 33 (1999)

    Google Scholar 

  48. D.A. Cisneros, C. Hung, C.M. Franz et al., J. Struct. Biol. 154, 232 (2006)

    Google Scholar 

  49. Y. Jiao, D.I. Cherny, G. Heim et al., J. Mol. Biol. 314, 233 (2001)

    Google Scholar 

  50. M. Stolz, D. Stoffler, U. Aebi et al., J. Struct. Biol. 131, 171 (2000)

    Google Scholar 

  51. K. Wadu-Mesthrge, N.A. Amro, J.C. Garno et al., Biophys. J. 80, 1891 (2001)

    Google Scholar 

  52. J.N. Ngunjiri, J.C. Garno, Anal. Chem. 80, 1361 (2008)

    Google Scholar 

  53. A.J. Bard, F.-R.F. Fan, D.T. Pierce et al., Science 254, 68 (1991)

    ADS  Google Scholar 

  54. D.L. Bu, T.J. Mullen, G.Y. Liu, ACS Nano 4(11), 6863 (2010)

    Google Scholar 

  55. A.J. Bard, F.-R.F. Fan, J. Kwak et al., Anal. Chem. 61, 132 (1989)

    Google Scholar 

  56. P. Sun, F.O. Laforge, M.V. Mirkin, Phys. Chem. Chem. Phys. 9, 802 (2007)

    Google Scholar 

  57. J.V. Macpherson, P.R. Unwin, Anal. Chem. 72, 276 (2000)

    Google Scholar 

  58. S. Manne, P.K. Hansma, J. Massie et al., Science 251(4990), 183 (1991)

    ADS  Google Scholar 

  59. P.L.T.M. Frederix, P.D. Bosshart, T. Akiyama et al., Nanotechnology 19, 384004 (2008)

    ADS  Google Scholar 

  60. D.T. Pierce, P.R. Unwin, A.J. Bard, Anal. Chem. 64, 1795 (1992)

    Google Scholar 

  61. H. Zhang, D. Zhang, Y. He, Microsc. Res. Tech. 66, 126 (2005)

    Google Scholar 

  62. Y. Shen, M. Trauble, G. Wittstock, Phys. Chem. Chem. Phys. 10, 3635 (2008)

    Google Scholar 

  63. A. Davoodi, J. Pan, C. Leygraf et al., Electrochem. Solid-State Lett. 8, B21 (2005)

    Google Scholar 

  64. P.M. Diakowski, Z. Ding, Phys. Chem. Chem. Phys. 9, 5966 (2007)

    Google Scholar 

  65. L.H. Lie, M.V. Mirkin, S. Hakkarainen et al., J. Electroanal. Chem. 603, 67 (2007)

    Google Scholar 

  66. J. Shou, D.O. Wipf, J. Electrochem. Soc. 144, 1202 (1997)

    Google Scholar 

  67. C.A. Nijhuis, J.K. Sinha, G. Wittstock et al., Langmuir 22, 9770 (2006)

    Google Scholar 

  68. C.-H. Chen, N. Washburn, A.A. Gewirth, J. Phys. Chem. 97, 9754 (1993)

    Google Scholar 

  69. S. Meltzer, D. Mandler, J. Electrochem. Soc. 142, L82 (1995)

    Google Scholar 

  70. S.-Y. Ku, K.-T. Wong, A.J. Bard, J. Am. Chem. Soc. 130, 2392 (2008)

    Google Scholar 

  71. S. Xu, G.Y. Liu, Langmuir 13(2), 127 (1997)

    Google Scholar 

  72. J.-J. Yu, J.N. Ngunjiri, A.T. Kelley et al., Langmuir 24, 11661 (2008)

    Google Scholar 

  73. S. Ryu, G.C. Schatz, J. Am. Chem. Soc. 128(35), 11563 (2006)

    Google Scholar 

  74. J.N. Ngunjiri, A.T. Kelley, Z.M. Lejeune et al., Scanning 30(2), 123 (2008)

    Google Scholar 

  75. G. Yang, J.C. Garno, G.-Y. Liu, Scanning Probe-Based Lithography for Production of Biological and Organic Nanostructures on Surfaces (4.01) (Elsevier, Amsterdam, 2011)

    Google Scholar 

  76. T. Tian, Z.M. LeJeune, W.K. Serem et al., in Tip-Based Nanofabrication, ed. by A.A. Tseng (Springer, New York, 2011)

    Google Scholar 

  77. J.N. Ngunjiri, J.-R. Li, J.C. Garno, in Nanodevices for the Life Sciences, ed. by C.S.S.R. Kumar (Wiley-VCH, New York, 2006)

    Google Scholar 

  78. J.F. Liu, S. Cruchon-Dupeyrat, J.C. Garno et al., Nano Lett. 2(9), 937 (2002)

    ADS  Google Scholar 

  79. D.J. Zhou, X.Z. Wang, L. Birch et al., Langmuir 19(25), 10557 (2003)

    Google Scholar 

  80. W.J. Price, P.K. Kuo, T.R. Lee et al., Langmuir 21(18), 8422 (2005)

    Google Scholar 

  81. W.J. Price, S.A. Leigh, S.M. Hsu et al., J. Phys. Chem. A 110(4), 1382 (2006)

    Google Scholar 

  82. J. Liang, L.G. Rosa, G. Scoles, J. Phys. Chem. C 111(46), 17275 (2007)

    Google Scholar 

  83. J. Ngunjiri, J.C. Garno, Anal. Chem. 80(5), 1361 (2008)

    Google Scholar 

  84. J.H. Yu, J.N. Ngunjiri, A.T. Kelley et al., Langmuir 24(20), 11661 (2008)

    Google Scholar 

  85. Y.H. Tan, M. Liu, B. Nolting et al., ACS Nano 2(11), 2374 (2008)

    Google Scholar 

  86. N.A. Amro, L.P. Kotra, K. Wadu-Mesthrige et al., Langmuir 16(6), 2789 (2000)

    Google Scholar 

  87. A.D. Schenk, P.J.L. Werten, S. Scheuring et al., J. Mol. Biol. 350, 278 (2005)

    Google Scholar 

  88. S. Scheuring, P. Ringler, M. Borgnia et al., EMBO J. 18, 4981 (1999)

    Google Scholar 

  89. D.J. Muller, F.A. Schabert, G. Buldt et al., Biophys. J. 68, 1681 (1995)

    ADS  Google Scholar 

  90. P.L.T.M. Frederix, M.R. Gullo, T. Akiyama et al., Nanotechnology 16(8), 997 (2005)

    ADS  Google Scholar 

  91. S. Boussaad, N.J. Tao, J. Am. Chem. Soc. 121, 4510 (1999)

    Google Scholar 

  92. C.A.J. Putman, K.O. Van der Werf, B.G. De Grooth et al., Appl. Phys. Lett. 64(18), 2454 (1994)

    ADS  Google Scholar 

  93. S.R. Sousa, M.M. Bras, P. Moradas-Ferreira et al., Langmuir 23, 7046 (2007)

    Google Scholar 

  94. F. Kienberger, C. Stroh, G. Kada et al., Ultramicroscopy 97, 229 (2003)

    Google Scholar 

  95. H. Asakawa, T. Fukuma, Nanotechnology 20(26), 7 (2009)

    Google Scholar 

  96. Z. Deng, V. Lulevich, F.T. Liu et al., J. Phys. Chem. B 114(18), 5971 (2010)

    Google Scholar 

  97. T. Zink, Z. Deng, H. Chen et al., Ultramicroscopy 109(1), 22 (2008)

    Google Scholar 

  98. H.G. Hansma, J. Vesenka, C. Siegerist et al., Science 256(5060), 1180 (1992)

    ADS  Google Scholar 

  99. A.D.L. Humphris, A.N. Round, M.J. Miles, Surf. Sci. 491(3), 468 (2001)

    ADS  Google Scholar 

  100. S. Kasas, N.H. Thomson, B.L. Smith et al., Biochem. 36(3), 461 (1997)

    Google Scholar 

  101. Y. Liang, D. Fotiadis, S. Filipek et al., J. Biol. Chem. 278(24), 21655 (2003)

    Google Scholar 

  102. D.J. Müller, N.A. Dencher, T. Meier et al., FEBS Lett. 504(3), 219 (2001)

    Google Scholar 

  103. M. Guthold, M. Bezanilla, D.A. Erie et al., Proc. Natl. Acad. Sci. USA 91, 12927 (1994)

    ADS  Google Scholar 

  104. C.-A. Schoenenberger, J.H. Hoh, Biophys. J. 67, 929 (1994)

    ADS  Google Scholar 

  105. Y.L. Lyubchenko, L.S. Shlyakhtenko, Methods 47, 206 (2009)

    Google Scholar 

  106. D.J. Müller, A. Engel, U. Matthey et al., J. Mol. Biol. 327(5), 925 (2003)

    Google Scholar 

  107. M. Liu, N.A. Amro, G.-Y. Liu, Annu. Rev. Phys. Chem. 59, 367 (2008)

    ADS  Google Scholar 

  108. M.A. Case, G.L. McLendon, Y. Hu et al., Nano Lett. 3, 425 (2003)

    ADS  Google Scholar 

  109. Y. Hu, A. Das, M.H. Hecht et al., Langmuir 21(20), 9103 (2005)

    Google Scholar 

  110. N.A. Amro, G.-y. Liu, Proc. Natl. Acad. Sci. USA 99, 5165 (2002)

    ADS  Google Scholar 

  111. Y.H. Tan, M. Liu, B. Nolting et al., ACS Nano 2, 2374 (2008)

    Google Scholar 

  112. P.V. Schwartz, Langmuir 17, 5971 (2001)

    Google Scholar 

  113. E. Mirmomtaz, M. Castronovo, C. Grunwald et al., Nano Lett. ASAP (2008)

    Google Scholar 

  114. M. Liu, N.A. Amro, C.S. Chow et al., Nano Lett. 2, 863 (2002)

    ADS  Google Scholar 

  115. M. Liu, G.-Y. Liu, Langmuir 21(5), 1972 (2005)

    Google Scholar 

  116. M. Castronovo, S. Radovic, C. Grunwald et al., Nano Lett. 8, 4140 (2008)

    ADS  Google Scholar 

  117. M. Castronovo, A. Lucesoli, P. Parisse et al., Nat. Commun. 2, 297 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors received financial support from the National Science Foundation (DMR-0906873) and also from the Dreyfus Foundation (Camille Dreyfus Teacher-Scholar Award). Venetia D. Lyles is supported by a Fellowship from the Louisiana Board of Regents. Wilson K. Serem is an LSU doctoral candidate supported by study-leave from Masinde Muliro University, Kenya. The authors thank Dr. K. Lusker for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne C. Garno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lyles, V.D., Serem, W.K., Yu, JJ., Garno, J.C. (2013). Surface Characterization Using Atomic Force Microscopy (AFM) in Liquid Environments. In: Bracco, G., Holst, B. (eds) Surface Science Techniques. Springer Series in Surface Sciences, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34243-1_20

Download citation

Publish with us

Policies and ethics