Skip to main content

Ontology Mapping on Multi-ontology Graphs via Optimizing Ranking Function

  • Conference paper
Emerging Research in Artificial Intelligence and Computational Intelligence (AICI 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 315))

  • 1869 Accesses

Abstract

Ontology mapping is an important research topic in information retrieval and widely used in many fields. By analyzing the ranking algorithm by optimizing NDCG measure, we propose the new algorithm for ontology mapping. Via the ranking learning algorithm, the multi-ontology graphs are mapped into a line consisting of real numbers. The similarity between two concepts then can be measured by comparing the difference between their corresponding real numbers. The experimental results show that the proposed new algorithm is of high accuracy and efficiency on ontology similarity calculation in physics education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lambrix, P., Edberg, A.: Evaluation of ontology tools in bioinformatics. In: Pacific Symposium on Biocomputing, pp. 529–600 (2003)

    Google Scholar 

  2. Bouzeghoub, A., Elbyed, A.: Ontology mapping for web-based educational systems interoperability. IBIS 1(1), 73–84 (2006)

    Google Scholar 

  3. Su, X., Gulla, J.A.: Semantic Enrichment for Ontology Mapping. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 217–228. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Joachims, T.: Optimizing search engines using clickthrough data. In: Proc.The 8th ACM SIGKDD Intl. Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM, New York (2002)

    Google Scholar 

  5. Chua, T.S., Neo, S.Y., Goh, H.K., et al.: Trecvid 2005 by nus pris, NIST TRECVID (2005)

    Google Scholar 

  6. Corinna, C., Mehryar, M., Ashish, R.: Magnitude-Preserving Ranking Algorithms. In: Proc. The 24th International Conference on Machine Learning, Corvallis, OR, USA, pp. 169–176 (June 2007)

    Google Scholar 

  7. David, C., Tong, Z.: Subset Ranking Using Regression. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 605–619. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Rong, Y., Hauptmann, A.G.: Efficient Margin-Based Rank Learning Algorithms for Information Retrieval. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 113–122. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Cynthia, R.: Ranking with a P-Norm Push. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 589–604. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Dekel, O., Manning, C., Singer, Y.: Log-linear models for label ranking. NIPS 16 (2004)

    Google Scholar 

  11. Fung, G., Rosales, R., Krishnapuram, B.: Learning rankings via convex hull separation. In: Neural Information Processing Systems - NIPS (2005)

    Google Scholar 

  12. Raykar, V.C., Duraiswami, R.: A fast algorithm for learning large scale preference relations. In: Proc. The Eleventh International Conference on Artificial Intelligence and Statistics, San Juan, Puerto Rico (March 2007)

    Google Scholar 

  13. Kutin, S., Niyogi, P.: The interaction of stability and weakness in AdaBoost, Technical Report TR-2001-30, Computer Science Department, University of Chicago (2001)

    Google Scholar 

  14. Agarwal, S., Niyogi, P.: Stability and generalization of bipartite ranking algorithms. In: Proc. The 18th Annual Conference on Learning Theory, Bertinoro, Italy, pp. 27–30 (2005)

    Google Scholar 

  15. Agarwal, S., Niyogi, P.: Generalization bounds for ranking algorithms via algorithmic stability. Journal of Machine Learning Research 10, 441–474 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Cynthia, R.: The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of the list. Journal of Machine Learning Research 10, 2233–2271 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Gao, W., Zhang, Y., Liang, L., Xia, Y.: Stability analysis for ranking algorithms. In: Proceedings 2010 IEEE International Conference on Information Theory and Information Security, Beijing, China, pp. 973–976 (December 2010)

    Google Scholar 

  18. Gao, W., Zhang, Y., Gao, Y., Liang, L., Xia, Y.: Strong and Weak Stability of Bipartite Ranking Algorithms. In: International Conference on Engineering and Information Management (ICEIM 2011), Chengdu, China, pp. 303–307 (April 2011)

    Google Scholar 

  19. Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to rank by optimizing NDCG measure. In: The Twenty-Third Annual Conference on Neural Information Processing Systems (December 2009)

    Google Scholar 

  20. Hoi, S.C.H., Jin, R.: Semi-supervised ensemble ranking. In: Proceedings of Association for the Advancement of Artificial Intelligence, AAAI 2008 (2008)

    Google Scholar 

  21. Salakhutdinov, R., Roweis, S., Ghahramani, Z.: On the convergence of bound optimization algorithms. In: Proc. 19th Conf. in Uncertainty in Artificial Intelligence, UAI 2003 (2003)

    Google Scholar 

  22. Craswell, N., Hawking, D.: Overview of the TREC 2003 web track. In: Proc. The 12th Text Retrieval Conference. NIST Special Pabulication, Gaithersburg (2003)

    Google Scholar 

  23. Huang, X., Xu, T., Gao, W., Jia, Z.: A Fast Algorithm for Ontology Similarity Measure and Ontology Mapping. In: Processdings of 2011 4th IEEE International Conference on Computer Science and Information Technology, Chengdu, China, pp. 567–570 (2011)

    Google Scholar 

  24. Huang, X., Xu, T., Gao, W., Gong, S.: Ontology Similarity Measure and Ontology Mapping Using Half Transductive Ranking. In: Processdings of 2011 4th IEEE International Conference on Computer Science and Information Technology, Chengdu, China, pp. 571–574 (2011)

    Google Scholar 

  25. Wang, Y., Gao, W., Zhang, Y., Gao, Y.: Push Ranking Learning Algorithm on graphs. In: 2010 International Conference on Circuit and Signal Processing, Shanghai, China, pp. 368–371 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, X., Wang, Y., Gao, W. (2012). Ontology Mapping on Multi-ontology Graphs via Optimizing Ranking Function. In: Lei, J., Wang, F.L., Deng, H., Miao, D. (eds) Emerging Research in Artificial Intelligence and Computational Intelligence. AICI 2012. Communications in Computer and Information Science, vol 315. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34240-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34240-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34239-4

  • Online ISBN: 978-3-642-34240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics