Skip to main content

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 2961 Accesses

Abstract

Devices fabricated by using the inner-crystal piezopotential as a “gate” voltage to tune/control the carrier generation, transport, and recombination processes at the vicinity of a p–n junction are named piezo-phototronics. The presence of piezoelectric charges at the interface/junction can significantly affect the charge carrier separation and transport. This chapter focuses on the basic theory for the piezo-phototronic effect on LED, photon detector, and solar cell. Both analytical equations and numerical simulations are given to present the basic physics for understanding the general phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Zhang, Z.L. Wang, Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 24, 4712–4718 (2012)

    Article  CAS  Google Scholar 

  2. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  3. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, Oxford, 1996)

    Google Scholar 

  4. Q. Yang, W.H. Wang, S. Xu, Z.L. Wang, Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11(9), 4012–4017 (2011)

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y. Liu, Z.L. Wang, Fundamental theory of piezotronics. Adv. Mater. 23(27), 3004–3013 (2011)

    Article  CAS  Google Scholar 

  6. Comsol Model Gallery (Semiconductor Diode). http://www.comsol.com/showroom/gallery/114/, accessed October 2011

  7. Y. Liu, Q. Yang, Y. Zhang, Y.Z. Yang, Z.L. Wang, Nanowire piezo-phototronic photodetector: theory and experimental design. Adv. Mater. 24(11), 1410–1417 (2012)

    Article  CAS  Google Scholar 

  8. E.H. Rhoderick, R.H. Williams, Metal–Semiconductor Contact (Clarendon, Oxford, 1988)

    Google Scholar 

  9. Z.Y. Zhang, K. Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, L.M. Peng, Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects. Adv. Funct. Mater. 17(14), 2478–2489 (2007)

    Article  CAS  Google Scholar 

  10. D.A. Neamen, Semiconductor Physics and Devices, 3rd edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  11. D.G. Thomas, J.J. Hopfield, Exciton spectrum of cadmium sulfide. Phys. Rev. 116(3), 573–582 (1959)

    Article  CAS  Google Scholar 

  12. Q. Yang, X. Guo, W.H. Wang, Y. Zhang, S. Xu, D.H. Lien, Z.L. Wang, Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4(10), 6285–6291 (2010)

    Article  CAS  Google Scholar 

  13. X.J. Zhang, W. Ji, S.H. Tang, Determination of optical nonlinearities and carrier lifetime in ZnO. J. Opt. Soc. Am. B 14(8), 1951–1955 (1997)

    Article  CAS  Google Scholar 

  14. R.B. Godfrey, M.A. Green, 655 mV open-circuit voltage, 17.6 % efficient silicon MIS solar cells. Appl. Phys. Lett. 34(11), 790–793 (1979)

    Article  CAS  Google Scholar 

  15. R. Brendel, H.J. Queisser, On the thickness dependence of open circuit voltages of p–n junction solar cells. Sol. Energy Mater. Sol. Cells 29(4), 397–401 (1993)

    Article  CAS  Google Scholar 

  16. H.Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, Y. Yang, L.P. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 3, 649–654 (2009)

    Article  CAS  Google Scholar 

  17. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganas, J.V. Manca, On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 8, 904–909 (2009)

    Article  CAS  Google Scholar 

  18. Y.B. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J.S. Huang, Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296–302 (2011)

    Article  CAS  Google Scholar 

  19. Y. Zhang, Y. Yang, Z.L. Wang, Piezo-phototronics effect on nano/microwire solar cells. Energy Environ. Sci. 5, 6850–6856 (2012)

    Article  CAS  Google Scholar 

  20. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Piezoresistive effect in wurtzite n-type GaN. Appl. Phys. Lett. 68(6), 818–819 (1996)

    Article  CAS  Google Scholar 

  21. R. Gaska, M.S. Shur, A.D. Bykhovski, J.W. Yang, M.A. Khan, V.V. Kaminski, S.M. Soloviov, Piezoresistive effect in metal–semiconductor–metal structures on p-type GaN. Appl. Phys. Lett. 76(26), 3956–3958 (2000)

    Article  CAS  Google Scholar 

  22. Z.L. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)

    Article  Google Scholar 

  23. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z.L. (2012). Theory of Piezo-Phototronics. In: Piezotronics and Piezo-Phototronics. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34237-0_7

Download citation

Publish with us

Policies and ethics