Skip to main content

Piezopotential in Wurtzite Semiconductors

  • Chapter
Piezotronics and Piezo-Phototronics

Part of the book series: Microtechnology and MEMS ((MEMS))

Abstract

The most fundamental physics for piezotronics and piezo-phototronics is in the presence of a piezoelectric potential (piezopotential) in semiconductor structured materials, such as the wurtzite structure. This chapter introduces the fundamental theory for calculating the piezopotential distribution in nanostructures with and without considering the presence of doping. The finite conductivity possessed by the material can partially screen the regional piezopotential having an opposite polarity to the type of doping, but cannot completely cancel the polarization charge due to the dielectric property of the material and the moderate doping level. The effect of piezopotential on the local contact in electrical measurements is also discussed, and a through-end model is proposed for understanding the transport properties of nanowire-based devices. This model will be adopted in future chapters for understanding the IV characteristics of the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.J. Xiang, J.L. Yang, J.G. Hou, Q.S. Zhu, Piezoelectricity in ZnO nanowires: a first-principles study. Appl. Phys. Lett. 89(22), 223111 (2006)

    Article  Google Scholar 

  2. Z.C. Tu, X. Hu, Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74(3), 035434 (2006)

    Article  Google Scholar 

  3. A.J. Kulkarni, M. Zhou, F.J. Ke, Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16(12), 2749–2756 (2005)

    Article  CAS  Google Scholar 

  4. P.J. Michalski, N. Sai, E.J. Mele, Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95(11), 116803 (2005)

    Article  CAS  Google Scholar 

  5. Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang, Y.S. Zhang, Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 14(10), 943–956 (2004)

    Article  CAS  Google Scholar 

  6. J.F. Nye, Physical Properties of Crystals (Oxford University Press, Oxford, 1957)

    Google Scholar 

  7. Q.H. Qin, Fracture Mechanics of Piezoelectric Materials (WIT Press, Southampton, 2001)

    Google Scholar 

  8. Y.F. Gao, Z.L. Wang, Electrostatic potential in a bent Piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007)

    Article  CAS  Google Scholar 

  9. R.W. Soutas-Little, Elasticity (Dover, Mineola, 1999)

    Google Scholar 

  10. J. Zhou, P. Fei, Y.F. Gao, Y.D. Gu, J. Liu, G. Bao, Z.L. Wang, Mechanical–electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 8(9), 2725–2730 (2008)

    Article  CAS  Google Scholar 

  11. Z.Y. Gao, J. Zhou, Y.D. Gu, P. Fei, Y. Hao, G. Bao, Z.L. Wang, Effects of piezoelectric potential on the transport characteristics of metal–ZnO nanowire–metal field effect transistor. J. Appl. Phys. 105(11), 113707 (2009)

    Article  Google Scholar 

  12. C.S. Lao, J. Liu, P.X. Gao, L.Y. Zhang, D. Davidovic, R. Tummala, Z.L. Wang, ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes. Nano Lett. 6(2), 263–266 (2006)

    Article  CAS  Google Scholar 

  13. Y.F. Gao, Z.L. Wang, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9(3), 1103–1110 (2009)

    Article  CAS  Google Scholar 

  14. F. Sacconi, A. Di Carlo, P. Lugli, H. Morkoc, Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs. IEEE Trans. Electron Devices 48(3), 450–457 (2001)

    Article  CAS  Google Scholar 

  15. W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, Y. Zhang, S.S. Mao, R. Kling, C. Kirchner, A. Waag, Pressure-dependent photoluminescence study of ZnO nanowires. Appl. Phys. Lett. 86(15), 153117 (2005)

    Article  Google Scholar 

  16. G. Mantini, Y.F. Gao, A. D’Amico, C. Falconi, Z.L. Wang, Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire. Nano Res. 2, 624–629 (2009)

    Article  CAS  Google Scholar 

  17. M.P. Lu, J.H. Song, M.Y. Lu, M.T. Chen, Y.F. Gao, L.F. Chen, Z.L. Wang, Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9(3), 1223–1227 (2009)

    Article  CAS  Google Scholar 

  18. Y. Zhang, Y.F. Hu, S. Xiang, Z.L. Wang, Effects of piezopotential spatial distribution on local contact dictated transport property of ZnO micro/nanowires. Appl. Phys. Lett. 97(3), 033509 (2010)

    Article  Google Scholar 

  19. G.A. Maugin, Continuum Mechanics of Electromagnetic Solids (North-Holland, Amsterdam, 1988)

    Google Scholar 

  20. R.W. Soutas-Little, Elasticity, vol. XVI (Dover, Mineola, 1999), p. 431

    Google Scholar 

  21. K.W. Chung, Z. Wang, J.C. Costa, F. Williamsion, P.P. Ruden, M.I. Nathan, Barrier height change in GaAs Schottky diodes induced by piezoelectric effect. Appl. Phys. Lett. 59(10), 1191 (1991)

    Article  CAS  Google Scholar 

  22. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  23. J.H. Song, Y. Zhang, C. Xu, W.Z. Wu, Z.L. Wang, Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage. Nano Lett. 11(7), 2829–2834 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z.L. (2012). Piezopotential in Wurtzite Semiconductors. In: Piezotronics and Piezo-Phototronics. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34237-0_2

Download citation

Publish with us

Policies and ethics