Skip to main content

Piezo-Phototronic Effect on Light-Emitting Diode

  • Chapter
Piezotronics and Piezo-Phototronics

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 2964 Accesses

Abstract

As a classical device, the performance of an LED is dictated by the structure of the p–n junction and the characteristics of the semiconductor materials. Once an LED is made, its efficiency is determined largely by the local charge carrier densities and the time at which the charges can remain at the vicinity of the junction. The latter is traditionally controlled by growing a quantum well or using a built-in electronic polarization for “trapping” electrons and holes in the conduction and valence bands, respectively. This is a rather complex and expensive process involving MBE and MOCVD, and more importantly, the width and potential well depth of the quantum well are fixed once the growth is complete. In this chapter, we describe the piezo-phototronic effect on the light emitting of a n-ZnO–p-GaN structure for illustrating its general impact to LED. The emission intensity and injection current at a fixed applied voltage have been enhanced by a factor of 17 and 4 after applying a 0.093 % compressive strain, respectively, and the corresponding conversion efficiency has been improved by a factor of 4.25 in reference to that without applying strain! The absolute external efficiency has reached 7.82 %. This hugely improved performance is suggested to arise from an effective increase in the local “biased voltage” as a result of the band shift caused by piezopotential and the trapping of holes/electrons at the interface region in a channel created by the piezopotential near the interface. The study shows that the piezo-phototronic effect can be very effectively used for enhancing the efficiency of energy conversion in today’s green and renewable energy technology without using the sophisticated nanofabrication procedures that are of high cost and complex. The physical model presented can be expanded to many other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, S. Nakamura, Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl. Phys. Lett. 84(6), 855–857 (2004)

    Article  CAS  Google Scholar 

  2. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003)

    Article  CAS  Google Scholar 

  3. M.A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, F. Capasso, Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass. Nano Lett. 8(6), 1695–1699 (2008)

    Article  Google Scholar 

  4. S. Xu, C. Xu, Y. Liu, Y.F. Hu, R.S. Yang, Q. Yang, J.H. Ryou, H.J. Kim, Z. Lochner, S. Choi, R. Dupuis, Z.L. Wang, Ordered nanowire array blue/near-UV light emitting diodes. Adv. Mater. 22(42), 4749–4753 (2010)

    Article  CAS  Google Scholar 

  5. Q. Yang, W.H. Wang, S. Xu, Z.L. Wang, Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11(9), 4012–4017 (2011)

    Article  CAS  Google Scholar 

  6. J.M. Bao, M.A. Zimmler, F. Capasso, X.W. Wang, Z.F. Ren, Broadband ZnO single-nanowire light-emitting diode. Nano Lett. 6(8), 1719–1722 (2006)

    Article  CAS  Google Scholar 

  7. B. Weintraub, Y.G. Wei, Z.L. Wang, Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angew. Chem., Int. Ed. Engl. 48(47), 8981–8985 (2009)

    Article  CAS  Google Scholar 

  8. L.B. Shi, S. Cheng, R.B. Li, L. Kang, J.W. Jin, M.B. Li, C.Y. Xu, A study on strain affecting electronic structure of wurtzite ZnO by first principles. Mod. Phys. Lett. B 23(19), 2339–2352 (2009)

    Article  CAS  Google Scholar 

  9. W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, Y. Zhang, S.S. Mao, R. Kling, C. Kirchner, A. Waag, Pressure-dependent photoluminescence study of ZnO nanowires. Appl. Phys. Lett. 86(15), 153117 (2005)

    Article  Google Scholar 

  10. V.Y. Davydov, N.S. Averkiev, I.N. Goncharuk, D.K. Nelson, I.P. Nikitina, A.S. Polkovnikov, A.N. Smirnov, M.A. Jacobsen, O.K. Semchinova, Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC. J. Appl. Phys. 82(10), 5097–5102 (1997)

    Article  CAS  Google Scholar 

  11. M. Suzuki, T. Uenoyama, Strain effect on electronic and optical properties of GaN/AlGaN quantum-well lasers. J. Appl. Phys. 80(12), 6868–6874 (1996)

    Article  CAS  Google Scholar 

  12. Z.L. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)

    Article  Google Scholar 

  13. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    Article  CAS  Google Scholar 

  14. S.N. Cha, J.S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.W. Kim, J.M. Kim, Sound-driven piezoelectric nanowire-based nanogenerators. Adv. Mater. 22(42), 4726–4730 (2010)

    Article  CAS  Google Scholar 

  15. X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, Z.L. Wang, Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6(12), 2768–2772 (2006)

    Article  CAS  Google Scholar 

  16. Y. Yang, J.J. Qi, Q.L. Liao, H.F. Li, Y.S. Wang, L.D. Tang, Y. Zhang, High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology 20, 125201 (2009)

    Article  Google Scholar 

  17. J. Ebothe, W. Gruhn, A. Elhichou, I.V. Kityk, R. Dounia, A. Addou, Giant piezooptics effect in the ZnO-Er3+ crystalline films deposited on the glasses. Opt. Laser Technol. 36(3), 173–180 (2004)

    Article  CAS  Google Scholar 

  18. G.A. Zhu, R.S. Yang, S.H. Wang, Z.L. Wang, Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 10(8), 3151–3155 (2010)

    Article  CAS  Google Scholar 

  19. Y.F. Hu, Y. Zhang, S.H. Wang, L. Lin, Y. Ding, G. Zhu, Z.L. Wang, Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 12(7), 3851–3856 (2012)

    Article  CAS  Google Scholar 

  20. U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, P. Schlotter, Nature of the 2.8 eV photoluminescence band in Mg doped GaN. Appl. Phys. Lett. 72(11), 1326–1328 (1998)

    Article  CAS  Google Scholar 

  21. B.Z. Qu, Q.S. Zhu, X.H. Sun, S.K. Wan, Z.G. Wang, H. Nagai, Y. Kawaguchi, K. Hiramatsu, N. Sawaki, Photoluminescence of Mg-doped GaN grown by metalorganic chemical vapor deposition. J. Vac. Sci. Technol. A 21(4), 838–841 (2003)

    Article  CAS  Google Scholar 

  22. J. Neugebauer, C.G. Van de Walle, Gallium vacancies and the yellow luminescence in GaN. Appl. Phys. Lett. 69(4), 503–505 (1996)

    Article  Google Scholar 

  23. C.G. Van de Walle, Interactions of hydrogen with native defects in GaN. Phys. Rev. B 56(16), R10020–R10023 (1997)

    Article  Google Scholar 

  24. P.J. Dean, T. Inoguchi, S. Mito, K.I. Pankove, Y.S. Park, B.K. Shin, Y.M. Tairov, Y.A. Vodakov, S. Wagner, in Electroluminescence, ed. by K.I. Pankove Springer, Berlin (1977)

    Google Scholar 

  25. Y. Zhang, Y. Liu, Z.L. Wang, Fundamental theory of piezotronics. Adv. Mater. 23, 3004–3013 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z.L. (2012). Piezo-Phototronic Effect on Light-Emitting Diode. In: Piezotronics and Piezo-Phototronics. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34237-0_10

Download citation

Publish with us

Policies and ethics