Advertisement

Tangled Thrackles

  • János Pach
  • Radoš Radoičić
  • Géza Tóth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579)

Abstract

A tangle is a graph drawn in the plane so that any pair of edges have precisely one point in common, and this point is either an endpoint or a point of tangency. If we allow a third option: the common point may be a proper crossing between the two edges, then the graph is called a tangled thrackle. We establish the following analogues of Conway’s thrackle conjecture: The number of edges of a tangle cannot exceed its number of vertices, n. We also prove that the number of edges of an x-monotone tangled thrackle with n vertices is at most n + 1. Both results are tight for n > 3. For not necessarily x-monotone tangled thrackles, we have a somewhat weaker, but nearly linear, upper bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, E., Fox, J., Pach, J., Suk, A.: On grids in topological graphs. In: Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 403–412. ACM Press (2009)Google Scholar
  2. 2.
    Braß, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)zbMATHGoogle Scholar
  3. 3.
    Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete and Computational Geometry 23, 191–206 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cairns, G., McIntyre, M., Nikolayevsky, Y.: The thrackle conjecture for K5 and K3,3. In: Towards a Theory of Geometric Graphs, Contemp. Math., vol. 342, pp. 35–54. Amer. Math. Soc., Providence (2004)CrossRefGoogle Scholar
  5. 5.
    Cairns, G., Nikolayevsky, Y.: Generalized thrackle drawings of non-bipartite graphs. Discrete and Computational Geometry 41, 119–134 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cairns, G., Nikolayevsky, Y.: Outerplanar thrackles. Graphs and Combinatorics 28, 85–96 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fox, J., Frati, F., Pach, J., Pinchasi, R.: Crossings between Curves with Many Tangencies. In: Rahman, M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 1–8. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fulek, R., Pach, J.: A computational approach to Conway’s thrackle conjecture. Computational Geometry: Theory and Applications 44, 345–355 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Graham, R.L.: The largest small hexagon. Journal of Combinatorial Theory, Series A 18, 165–170 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Green, J.E., Ringeisen, R.D.: Combinatorial drawings and thrackle surfaces. In: Graph Theory, Combinatorics, and Algorithms (Kalamazoo, MI, 1992), vol. 2, pp. 999–1009. Wiley-Intersci. Publ., Wiley, New York (1995)Google Scholar
  11. 11.
    Hopf, H., Pannwitz, E.: Aufgabe Nr. 167. Jahresbericht Deutsch. Math.-Verein. 43, 114 (1934)zbMATHGoogle Scholar
  12. 12.
    Lovász, L., Pach, J., Szegedy, M.: On Conway’s thrackle conjecture. Discrete and Computational Geometry 18, 369–376 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Perlstein, A., Pinchasi, R.: Generalized thrackles and geometric graphs in ℝ3 with no pair of strongly avoiding edges. Graphs and Combinatorics 24, 373–389 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Piazza, B.L., Ringeisen, R.D., Stueckle, S.K.: Subthrackleable graphs and four cycles. In: Graph Theory and Applications (Hakone, 1990). Discrete Mathematics, vol. 127, pp. 265–276 (1994)Google Scholar
  15. 15.
    Pach, J., Sterling, E.: Conway’s conjecture for monotone thrackles. American Mathematical Monthly 118, 544–548 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pach, J., Suk, A., Treml, M.: Tangencies between families of disjoint regions in the plane. Computational Geometry: Theory and Applications 45, 131–138 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pach, J., Törőcsik, J.: Some geometric applications of Dilworth’s theorem. Discrete and Computational Geometry 12, 1–7 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pach, J., Tóth, G.: Disjoint edges in topological graphs. Journal of Combinatorics 1, 335–344 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ringeisen, R.D.: Two old extremal graph drawing conjectures: progress and perspectives. Congressus Numerantium 115, 91–103 (1996)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tóth, G.: Note on geometric graphs. Journal of Combinatorial Theory, Series A 89, 126–132 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Erdős, P.: Unsolved problem. In: Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 351–363. Inst. Math. Appl., Southend-on-Sea (1972)Google Scholar
  22. 22.
    Woodall, D.R.: Thrackles and deadlock. In: Welsh, D.J.A. (ed.) Combinatorial Mathematics and Its Applications, pp. 335–347. Academic Press (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • János Pach
    • 1
  • Radoš Radoičić
    • 2
  • Géza Tóth
    • 3
  1. 1.Ecole Polytechnique Fédérale de LausanneHungary
  2. 2.Baruch College, City University of New YorkUSA
  3. 3.Rényi Institute of MathematicsBudapestHungary

Personalised recommendations