Advertisement

Covering Islands in Plane Point Sets

  • Ruy Fabila-Monroy
  • Clemens Huemer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579)

Abstract

Let S be a set of n points in general position in the plane. A k-island I of S is a subset of k points of S such that Conv(I) ∩ S = I. We show that, for an arbitrary but fixed number k ≥ 2, the minimum number of k-islands among all sets S of n points is Θ(n2). The following related counting problem is also studied: For l < k, an l-island covers a k-island if it is contained in the k-island. Let Ck,l(S) be the minimum number of l-islands needed to cover all the k-islands of S and let Ck,l(n) be the minimum of Ck,l(S) among all sets S of n points. We show asymptotic bounds for Ck,l(n).

Keywords

planar point sets islands Horton sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronov, B., Dulieu, M., Hurtado, F.: Witness (Delaunay) Graphs. Comput. Geom. 44, 329–344 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bárány, I., Füredi, Z.: Empty simplices in Euclidean space. Canad. Math. Bull. 30, 436–445 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bárány, I., Valtr, P.: Planar point sets with a small number of empty convex polygons. Stud. Sci. Math. Hung. 41, 243–269 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bautista-Santiago, C., Cano, J., Fabila-Monroy, R., Flores-Peñaloza, D., González-Aguilar, H., Lara, D., Sarmiento, E., Urrutia, J.: On the Diameter of a Geometric Johnson Type Graph. In: 26th European Workshop on Computational Geometry, pp. 61–64 (2010)Google Scholar
  5. 5.
    Bautista-Santiago, C., Díaz-Báñez, J.M., Lara, D., Pérez-Lantero, P., Urrutia, J., Ventura, I.: Computing Maximal Islands. In: 25th European Workshop on Computational Geometry, pp. 333–336 (2009)Google Scholar
  6. 6.
    Bautista-Santiago, C., Heredia, M.A., Huemer, C., Ramírez-Vigueras, A., Seara, C., Urrutia, J.: On the number of edges in geometric graphs without empty triangles. Submitted to Journal (January 2011)Google Scholar
  7. 7.
    Devillers, O., Hurtado, F., Kàrolyi, G., Seara, C.: Chromatic variants of the Erdős-Szekeres Theorem. Comput. Geom. 26, 193–208 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dumitrescu, A.: Planar sets with few empty convex polygons. Stud. Sci. Math. Hung. 36, 93–109 (2000)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gerken, T.: Empty convex hexagons in planar point sets. Discrete Comput. Geom. 39, 239–272 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116–118 (1978)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Horton, J.D.: Sets with no empty convex 7-gons. Canad. Math. Bull. 26, 482–484 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane — a survey. In: Algorithms Combin., vol. 25, pp. 551–570. Springer (2003)Google Scholar
  13. 13.
    Katchalski, M., Meir, A.: On empty triangles determined by points in the plane. Acta Math. Hung. 51, 323–328 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38, 389–397 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sakai, T., Urrutia, J.: Covering the convex quadrilaterals of point sets. Graphs Combin. 23, 343–357 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Valtr, P.: On the minimum number of empty polygons in planar point sets. Stud. Sci. Math. Hungar. 30, 155–163 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Valtr, P.: On empty hexagons. In: Surveys on Discrete and Computational Geometry, Twenty Years Later, pp. 433–441. AMS (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ruy Fabila-Monroy
    • 1
  • Clemens Huemer
    • 2
  1. 1.Departamento de MatemáticasCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico
  2. 2.Departament de Matemàtica Aplicada IVUniversitat Politècnica de CatalunyaSpain

Personalised recommendations