Advertisement

Compact Grid Representation of Graphs

  • José Cáceres
  • Carmen Cortés
  • Clara Isabel Grima
  • Masahiro Hachimori
  • Alberto Márquez
  • Raiji Mukae
  • Atsuhiro Nakamoto
  • Seiya Negami
  • Rafael Robles
  • Jesús Valenzuela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579)

Abstract

A graph G is said to be grid locatable if it admits a representation such that vertices are mapped to grid points and edges to line segments that avoid grid points but the extremes. Additionally G is said to be properly embeddable in the grid if it is grid locatable and the segments representing edges do not cross each other. We study the area needed to obtain those representations for some graph families.

Keywords

graph drawing grid locatable grid embeddable chromatic number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balko, M.: Grid Representations and the Chromatic Number. In: 28th European Workshop on Computational Geometry, pp. 45–48 (2012)Google Scholar
  2. 2.
    Barrière, L., Huemer, C.: 4-Labelings and Grid Embeddings of Plane Quadrangulations. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 413–414. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Brooks, R.L.: On colouring the nodes of a network. Cambridge Philosophical Society, Math. Phys. Sci. 37, 194–197 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chrobak, M., Nakano, S.: Minimum width grid drawings of plane graphs. Computational Geometry 11(1), 29–54 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cornelsen, S., Schank, T., Wagner, D.: Drawing Graphs on Two and Three Lines. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 31–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Dolve, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. Advances in Computing Research. VLSI Theory, vol. 2. JAI Press, Inc., Greenwich (1984)Google Scholar
  7. 7.
    Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Flores-Peñaloza, D., Santos, F., Zaragoza, F.J.: Encajes primitivos de gráficas aplanables. In: XXVII Coloquio Víctor Neumann (2012)Google Scholar
  9. 9.
    Flores-Peñaloza, D., Zaragoza, F.J.: Every four-colorable graph is isomorphic to a subgraph of the visibility graph of the integer lattice. In: 21st Canadian Conference on Computational Geometry, CCCG 2009, pp. 91–94 (2009)Google Scholar
  10. 10.
    Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford University Press (1979)Google Scholar
  11. 11.
    Kára, J., Pór, A., Wood, D.R.: On the chromatic number of the visibility graph of a set of points in the plane. Discrete and Computational Geometry 34(3), 497–506 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Por, A., Wood, D.R.: On visibility and blockers. J. Computational Geometry 1(1), 29–40 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • José Cáceres
    • 1
  • Carmen Cortés
    • 2
  • Clara Isabel Grima
    • 2
  • Masahiro Hachimori
    • 3
  • Alberto Márquez
    • 2
  • Raiji Mukae
    • 4
  • Atsuhiro Nakamoto
    • 4
  • Seiya Negami
    • 4
  • Rafael Robles
    • 2
  • Jesús Valenzuela
    • 2
  1. 1.Universidad de AlmeríaSpain
  2. 2.Universidad de SevillaSpain
  3. 3.Tsukuba UniversityJapan
  4. 4.Yokohama National UniversityJapan

Personalised recommendations