Spiral Serpentine Polygonization of a Planar Point Set

  • Justin Iwerks
  • Joseph S. B. Mitchell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579)


We introduce a simple algorithm for constructing a spiral serpentine polygonization of a set S of n ≥ 3 points in the plane. Our algorithm simultaneously gives a triangulation of the constructed polygon at no extra cost, runs in O(n logn) time, and uses O(n) space.


polygonization triangulation serpentine point set algorithm computational geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abellanas, M., García, J., Hernández-Peñalver, G., Hurtado, F., Serra, O., Urrutia, J.: Onion Polygonizations. Information Processing Letters 57, 165–173 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agarwal, P.K., Hurtado, F., Toussaint, G.T., Trias, J.: On Polyhedra Induced by Point Sets in Space. Discrete Applied Mathematics 156, 42–54 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arkin, E., Fekete, S.P., Hurtado, F., Mitchell, J.S.B., Noy, M., Sacristán, V., Sethia, S.: On the Reflexivity of Point Sets. In: Discrete and Computational Geometry: The Goodman-Pollack Festschrift, Algorithms and Combinatorics, vol. 25, pp. 139–156 (2003)Google Scholar
  4. 4.
    Chazelle, B.: On the Convex Layers of a Planar Set. IEEE Transactions on Information Theory 31, 509–517 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Deneen, L., Shute, G.: Polygonizations of Point Sets in the Plane. Discrete and Computational Geometry 3, 77–87 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fekete, S.P.: On Simple Polygonizations with Optimal Area. Discrete and Computational Geometry 23, 73–110 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Graham, R.L.: An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set. Information Processing Letters 1, 132–133 (1972)CrossRefzbMATHGoogle Scholar
  8. 8.
    Grünbaum, B.: Hamiltonian Polygons and Polyhedra. Geombinatorics 3, 83–89 (1994)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Hershberger, J., Suri, S.: Applications of a Semi-Dynamic Convex Hull Algorithm. BIT Numerical Mathematics 32, 249–267 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Iwerks, J., Mitchell, J. S. B.: Spiral Serpentine Polygonization of a Planar Point Set. In: Proceedings of XIV Spanish Meeting on Computational Geometry, pp. 181–184 (2011)Google Scholar
  11. 11.
    Newborn, M., Moser, W.O.J.: Optimal Crossing-Free Hamiltonian Circuit Drawings of Kn. Journal of Combinatorial Theory, Series B 29, 13–26 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Quintas, L.V., Supnick, F.: On Some Properties of Shortest Hamiltonian Circuits. American Mathematical Monthly 72, 977–980 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shamos, M.I., Hoey, D.: Closest-Point Problems. In: Proceedings of the Sixteenth IEEE Symposium on Foundations of Computer Science, pp. 151–162 (1975)Google Scholar
  14. 14.
    Steinhaus, H.: One Hundred Problems in Elementary Mathematics. Dover Publications, Inc., New York (1964)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Justin Iwerks
    • 1
  • Joseph S. B. Mitchell
    • 1
  1. 1.Dept. of Applied Mathematics and StatisticsStony Brook UniversityStony BrookUSA

Personalised recommendations