Advertisement

Notes on the Twisted Graph

  • Elsa Omaña-Pulido
  • Eduardo Rivera-Campo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579)

Abstract

The twisted graph T n is a complete topological graph with n vertices v1,v2,…,v n in which two edges v i v j (i < j) and v s v t (s < t) cross each other if and only if i < s < t < j or s < i < j < t. We study several properties concerning plane topological subgraphs of T n .

Keywords

Alternating Path Tree Graph Max Graph Matching Graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akiyama, J., Urrutia, J.: Simple alternating path problem. Discrete Math. 84(1), 101–103 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avis, D., Fukuda, K.: Reverse search enumeration. Discrete Applied Math. 6, 21–46 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hajnal, P., Mészáros, V.: Note on noncrossing alternating path in colored convex sets. Accepted in Discrete Mathematics and Theoretical Computer ScienceGoogle Scholar
  4. 4.
    Harborth, H., Mengersen, I.: Drawings of the complete graph with maximum number of crossings. In: Proceedings of the Graph Theory and Computing, Boca Raton, Fl. Congressus Numerantium, vol. 88, pp. 225–228. Utilitas Math., Winnipeg (1992)Google Scholar
  5. 5.
    Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings. Graphs and Combin. 18, 517–532 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Klazar, M.: Counting pattern-free set partitions II. Noncrossing and other hypergraphs. Electron. J. Combin. 7, Research Paper 34, 25 pages (2000)Google Scholar
  7. 7.
    Kynčl, J., Pach, J., Tóth, G.: Long alternating paths in bicolored point sets. Discrete Math. 308(19), 4315–4321 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lawson, C.L.: Software for C1-interpolation. In: Rice, J. (ed.) Mathematical Software III, pp. 161–194. Academic Press, New York (1977)CrossRefGoogle Scholar
  9. 9.
    Pach, J., Solymosi, J., Tóth, G.: Unavoidable configurations in complete topological graphs. Discrete Comput. Geom. 30, 311–320 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rivera-Campo, E.: A Note on the Existente of Plane Spanning Trees of Geometrie Graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 274–277. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elsa Omaña-Pulido
    • 1
  • Eduardo Rivera-Campo
    • 1
  1. 1.Departamento de MatemáticasUniversidad Autónoma Metropolitana - IztapalapaMéxico D.F.México

Personalised recommendations