Advertisement

On 5-Gons and 5-Holes

  • Oswin Aichholzer
  • Thomas Hackl
  • Birgit Vogtenhuber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7579)

Abstract

We consider an extension of a question of Erdős on the number of k-gons in a set of n points in the plane. Relaxing the convexity restriction we obtain results on 5-gons and 5-holes (empty 5-gons). In particular, we show a direct relation between the number of non-convex 5-gons and the rectilinear crossing number, provide an improved lower bound for the number of convex 5-holes any point set must contain, and prove that the number of general 5-holes is asymptotically maximized for point sets in convex position.

Keywords

discrete geometry (empty) pentagons Erdős-Szekeres type problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ábrego, B.M., Fernández-Merchant, S., Leaǹos, J., Salazar, G.: A central approach to bound the number of crossings in a generalized configuration. Electronic Notes in Discrete Mathematics 30, 273–278 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aichholzer, O.: On the rectilinear crossing number, http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/crossing/
  3. 3.
    Aichholzer, O.: [Empty] [colored] k-gons - Recent results on some Erdős-Szekeres type problems. In: Proc. XIII Encuentros de Geometría Computacional, ECG 2009, Zaragoza, Spain, pp. 43–52 (2009)Google Scholar
  4. 4.
    Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A., Huemer, C., Urrutia, J., Valtr, P., Vogtenhuber, B.: On k-gons and k-holes in point sets. In: Proc. 23th Canadian Conference on Computational Geometry, CCCG 2011, Toronto, Canada, pp. 21–26 (2011)Google Scholar
  5. 5.
    Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M.A., Huemer, C., Urrutia, J., Vogtenhuber, B.: 4-holes in point sets. In: Proc. 27th European Workshop on Computational Geometry, EuroCG 2011, Morschach, Switzerland, pp. 115–118 (2011)Google Scholar
  6. 6.
    Aichholzer, O., Hackl, T., Vogtenhuber, B.: On 5-holes and 5-gons. In: Proc. XIV Encuentros de Geometría Computacional ECG2011, Alcalá de Henares, Spain, pp. 7–10 (2011)Google Scholar
  7. 7.
    Aichholzer, O., Krasser, H.: The point set order type data base: A collection of applications and results. In: Proc. 13th Canadian Conference on Computational Geometry, CCCG 2001, vol. 13, pp. 17–20 (2001)Google Scholar
  8. 8.
    Bárány, I., Károlyi, G.: Problems and Results around the Erdős-Szekeres Convex Polygon Theorem. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 91–105. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Bárány, I., Valtr, P.: Planar point sets with a small number of empty convex polygons. Studia Scientiarum Mathematicarum Hungarica 41(2), 243–266 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer (2005)Google Scholar
  11. 11.
    Dehnhardt, K.: Leere konvexe Vielecke in ebenen Punktmengen. Ph.D. thesis, TU Braunschweig, Germany (1987)Google Scholar
  12. 12.
    Erdős, P.: Some more problems on elementary geometry. Australian Mathematical Society Gazette 5, 52–54 (1978)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Erdős, P., Guy, R.: Crossing number problems. The American Mathematical Monthly 88, 52–58 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    García, A.: A Note on the Number of Empty Triangles. In: Marquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011 (Hurtado Festschrift). LNCS, vol. 7579, pp. 249–257. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Gerken, T.: Empty convex hexagons in planar point sets. Discrete and Computational Geometry 39(1-3), 239–272 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik 33, 116–118 (1978)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Horton, J.: Sets with no empty convex 7-gons. Canadian Mathematical Bulletin 26(4), 482–484 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Huemer, C.: Personal communication (2011)Google Scholar
  19. 19.
    Nicolás, C.: The empty hexagon theorem. Discrete and Computational Geometry 38(2), 389–397 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Valtr, P.: On empty pentagons and hexagons in planar point sets. In: Proc. 18th Computing: Australasian Theory Symposium, CATS 2012, Melbourne, Australia, pp. 47–48 (2012)Google Scholar
  21. 21.
    Vogtenhuber, B.: Combinatorial Aspects of [Colored] Point Sets in the Plane. Ph.D. thesis, Institute for Software Technology, Graz University of Technology, Graz, Austria (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Thomas Hackl
    • 1
  • Birgit Vogtenhuber
    • 1
  1. 1.Institute for Software TechnologyUniversity of TechnologyGrazAustria

Personalised recommendations