Synthesis with Clairvoyance

  • Orna Kupferman
  • Dorsa Sadigh
  • Sanjit A. Seshia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7261)


We consider the problem of automatically synthesizing, from a linear temporal logic (LTL) specification, a system that is guaranteed to satisfy the specification with respect to all environments. Algorithms for solving the synthesis problem reduce it to the solution of a game played between the system and its environment, in which the system and environment alternate between generating outputs and inputs respectively. Typically, the system is required to generate an output right after receiving the current input. If a solution to the game exists, the specification is said to be realizable.

In this paper, we consider the role of clairvoyance in synthesis, in which the system can “look into the future,” basing its output upon future inputs. An infinite look-ahead transforms the realizability problem into a problem known as universal satisfiability. A thesis we explore in this paper is that the notion of clairvoyance is useful as a heuristic even in the general case of synthesis, when there is no lookahead. Specifically, we suggest a heuristic in which we search for strategies where the system and the environment try to force each other into hopeless states in the game — states from which they cannot win, no matter how large the lookahead. The classification to hopeful and hopeless states is thus based on a modified notion of universal satisfiability where the output prefix is constrained. Our approach uses the automata for the specification in the process of classification into hopeful and hopeless states, and uses the structure of the automata in order to construct the game graph, but the important point is that the game itself is a reachability game. We demonstrate the efficiency of our approach with examples, and outline some directions for future work exploring the proposed approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Lamport, L., Wolper, P.: Realizable and Unrealizable Concurrent Program Specifications. In: Ausiello, G., Dezani-Ciancaglini, M., Ronchi Della Rocca, S. (eds.) ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)Google Scholar
  2. 2.
    Aminof, B., Kupferman, O., Lampert, R.: Reasoning about Online Algorithms with Weighted Automata. In: Proc. 20th SODA, pp. 835–844 (2009)Google Scholar
  3. 3.
    Breslauer, D.: On competitive on-line paging with lookahead. TCS 209(1–2), 365–375 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dill, D.L.: Trace theory for automatic hierarchical verification of speed independent circuits. MIT Press (1989)Google Scholar
  5. 5.
    Dworkin, L., Li, W., Seshia, S.A.: Automatic synthesis of a voting machine design (2010) (Unpublished Manuscript)Google Scholar
  6. 6.
    Filiot, E., Jin, N., Raskin, J.-F.: An Antichain Algorithm for LTL Realizability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Filiot, E., Jin, N., Raskin, J.-F.: Compositional Algorithms for LTL Synthesis. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fisman, D., Kupferman, O., Sheinvald, S., Vardi, M.Y.: A Framework for Inherent Vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 7–22. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Godhal, Y., Chatterjee, K., Henzinger, T.A.: Synthesis of AMBA AHB from formal specification. CoRR abs/1001.2811 (2010)Google Scholar
  10. 10.
    Harel, D., Pnueli, A.: On the development of reactive systems. In: NATO Advanced Science Institutes, vol. F-13, pp. 477–498. Springer (1985)Google Scholar
  11. 11.
    Holtmann, M., Kaiser, L., Thomas, W.: Degrees of Lookahead in Regular Infinite Games. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 252–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Hosch, F., Landweber, L.: Finite delay solutions for sequential conditions. In: Proc. 1st ICALP, pp. 45–60 (1972)Google Scholar
  13. 13.
    Jobstmann, B., Bloem, R.: Game-based and simulation-based improvements for LTL synthesis. In: Proc. 3nd GDV (2006)Google Scholar
  14. 14.
    Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A Tool for Property Synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Jurdzinski, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM Journal on Computing 38(4), 1519–1532 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kupferman, O., Piterman, N., Vardi, M.Y.: Safraless Compositional Synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 31–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th FOCS, pp. 531–540 (2005)Google Scholar
  18. 18.
    Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: Proc. 9th MEMOCODE (July 2011)Google Scholar
  19. 19.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. In: Proc. 21st LICS, pp. 255–264 (2006)Google Scholar
  20. 20.
    Piterman, N., Pnueli, A., Saar, Y.: Synthesis of Reactive(1) Designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–190 (1989)Google Scholar
  22. 22.
    Rabin, M.O.: Automata on infinite objects and Church’s problem. Amer. Mathematical Society (1972)Google Scholar
  23. 23.
    Safra, S.: On the complexity of ω-automata. In: Proc. 29th FOCS, pp. 319–327 (1988)Google Scholar
  24. 24.
    Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computation 115(1), 1–37 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Orna Kupferman
    • 1
  • Dorsa Sadigh
    • 2
  • Sanjit A. Seshia
    • 2
  1. 1.School of Engineering and Computer ScienceHebrew UniversityJerusalemIsrael
  2. 2.EECS DepartmentUC BerkeleyBerkeleyUSA

Personalised recommendations