Skip to main content

Graph Grammar Induction as a Parser-Controlled Heuristic Search Process

  • Conference paper
Applications of Graph Transformations with Industrial Relevance (AGTIVE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7233))

Abstract

A graph grammar is a generative description of a graph language (a possibly infinite set of graphs). In this paper, we present a novel algorithm for inducing a graph grammar from a given set of ‘positive’ and ‘negative’ graphs. The algorithm is guaranteed to produce a grammar that can generate all of the positive and none of the negative input graphs. Driven by a heuristic specific-to-general search process, the algorithm tries to find a small grammar that generalizes beyond the positive input set. During the search, the algorithm employs a graph grammar parser to eliminate the candidate grammars that can generate at least one negative input graph. We validate our method by inducing grammars for chemical structural formulas and flowcharts and thereby show its potential applicability to chemical engineering and visual programming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschenbrenner, N., Geiger, L.: Transforming Scene Graphs Using Triple Graph Grammars – A Practice Report. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 32–43. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Ates, K., Kukluk, J.P., Holder, L.B., Cook, D.J., Zhang, K.: Graph grammar induction on structural data for visual programming. In: Proc. of the 18th IEEE International Conference on Tools with Artificial Intelligence, pp. 232–242. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  3. Balogh, Z., Varró, D.: Model transformation by example using inductive logic programming. Software and Systems Modeling 8(3), 347–364 (2009)

    Article  Google Scholar 

  4. Brijder, R., Blockeel, H.: On the inference of non-confluent NLC graph grammars. Journal of Logic and Computation (to appear, 2012)

    Google Scholar 

  5. Buchmann, T., Dotor, A., Uhrig, S., Westfechtel, B.: Model-Driven Software Development with Graph Transformations: A Comparative Case Study. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 345–360. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley & Sons, New Jersey (2006)

    Book  Google Scholar 

  7. Dubey, A., Jalote, P., Aggarwal, S.K.: Learning context-free grammar rules from a set of programs. IET Software 2(3), 223–240 (2008)

    Article  Google Scholar 

  8. Fürst, L., Mernik, M., Mahnič, V.: Improving the graph grammar parser of Rekers and Schürr. IET Software 5(2), 246–261 (2011)

    Article  Google Scholar 

  9. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: A metamodel recovery system using grammar inference. Information and Software Technology 50(9-10), 948–968 (2008)

    Article  Google Scholar 

  10. Jeltsch, E., Kreowski, H.J.: Grammatical Inference Based on Hyperedge Replacement. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 461–474. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  11. Jonyer, I., Holder, L.B., Cook, D.J.: MDL-based context-free graph grammar induction and applications. International Journal of Artificial Intelligence Tools 13(1), 65–79 (2004)

    Article  Google Scholar 

  12. Kong, J., Zhang, K., Zeng, X.: Spatial graph grammars for graphical user interfaces. ACM Transactions on Computer–Human Interaction 13(2), 268–307 (2006)

    Article  Google Scholar 

  13. Kukluk, J.P., Holder, L.B., Cook, D.J.: Inferring graph grammars by detecting overlap in frequent subgraphs. Applied Mathematics and Computer Science 18(2), 241–250 (2008)

    MathSciNet  Google Scholar 

  14. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph. Data Mining and Knowledge Discovery 11(3), 243–271 (2005)

    Article  MathSciNet  Google Scholar 

  15. Nakamura, K., Matsumoto, M.: Incremental learning of context free grammars based on bottom-up parsing and search. Pattern Recognition 38(9), 1384–1392 (2005)

    Article  MATH  Google Scholar 

  16. Parekh, R., Honavar, V.: Grammar inference, automata induction, and language acquisition. In: Dale, R., Somers, H.L., Moisl, H. (eds.) Handbook of Natural Language Processing, pp. 727–764. Marcel Dekker, New York (2000)

    Google Scholar 

  17. Plasmeijer, R., van Eekelen, M.: Term Graph Rewriting and Mobile Expressions in Functional Languages. In: Nagl, M., Schürr, A., Münch, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 1–13. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph grammars. Journal of Visual Languages and Computing 8(1), 27–55 (1997)

    Article  Google Scholar 

  19. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations, vol. 1: Foundations. World Scientific, River Edge (1997)

    MATH  Google Scholar 

  20. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fürst, L., Mernik, M., Mahnič, V. (2012). Graph Grammar Induction as a Parser-Controlled Heuristic Search Process. In: Schürr, A., Varró, D., Varró, G. (eds) Applications of Graph Transformations with Industrial Relevance. AGTIVE 2011. Lecture Notes in Computer Science, vol 7233. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34176-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34176-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34175-5

  • Online ISBN: 978-3-642-34176-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics