Advertisement

Improving Fuzzy Multilevel Graph Embedding through Feature Selection Technique

  • Muhammad Muzzamil Luqman
  • Jean Yves Ramel
  • Josep Lladós
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7626)

Abstract

Graphs are the most powerful, expressive and convenient data structures but there is a lack of efficient computational tools and algorithms for processing them. The embedding of graphs into numeric vector spaces permits them to access the state-of-the-art computational efficient statistical models and tools. In this paper we take forward our work on explicit graph embedding and present an improvement to our earlier proposed method, named “fuzzy multilevel graph embedding - FMGE”, through feature selection technique. FMGE achieves the embedding of attributed graphs into low dimensional vector spaces by performing a multilevel analysis of graphs and extracting a set of global, structural and elementary level features. Feature selection permits FMGE to select the subset of most discriminating features and to discard the confusing ones for underlying graph dataset. Experimental results for graph classification experimentation on IAM letter, GREC and fingerprint graph databases, show improvement in the performance of FMGE.

Keywords

graphics recognition graph classification explicit graph embedding feature selection 

References

  1. 1.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  2. 2.
    Bunke, H., Irniger, C., Neuhaus, M.: Graph Matching – Challenges and Potential Solutions. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bunke, H., Gunter, S., Jiang, X.: Towards Bridging the Gap between Statistical and Structural Pattern Recognition: Two New Concepts in Graph Matching. In: Singh, S., Murshed, N., Kropatsch, W.G. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 1–11. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Roth, V., Laub, J., Kawanabe, M., Buhmann, J.: Optimal cluster preserving embedding of nonmetric proximity data. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1540–1551 (2003)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Yang, Q., Tang, X.: Directed graph embedding. In: International Joint Conference on Artificial Intelligence, pp. 2707–2712 (2007)Google Scholar
  6. 6.
    Shaw, B., Jebara, T.: Structure preserving embedding. In: International Conference on Machine Learning, pp. 1–8 (2009)Google Scholar
  7. 7.
    Foggia, P., Vento, M.: Graph Embedding for Pattern Recognition. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 75–82. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Lee, G., Madabhushi, A.: Semi-Supervised Graph Embedding Scheme with Active Learning (SSGEAL): Classifying High Dimensional Biomedical Data. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 207–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Riesen, K., Bunke, H.: Graph Classification and Clustering Based on Vector Space Embedding. World Scientific (2010)Google Scholar
  10. 10.
    Riesen, K., Bunke, H.: Graph Classification And Clustering Based On Vector Space Embedding. World Scientific Publishing Co., Inc. (2010)Google Scholar
  11. 11.
    Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recognition 44(5), 1057–1067 (2011)zbMATHCrossRefGoogle Scholar
  12. 12.
    Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1112–1124 (2005)CrossRefGoogle Scholar
  13. 13.
    Bunke, H., Riesen, K.: Improving vector space embedding of graphs through feature selection algorithms. Pattern Recognition 44(9), 1928–1940 (2011)CrossRefGoogle Scholar
  14. 14.
    Gibert, J., Valveny, E., Bunke, H.: Feature selection on node statistics based embedding of graphs. Pattern Recognition Letters (April 2012)Google Scholar
  15. 15.
    Gibert, J., Valveny, E., Bunke, H.: Dimensionality Reduction for Graph of Words Embedding. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 22–31. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Gibert, J., Valveny, E., Terrades, O.: Multiple classifiers for graph of words embedding. Multiple Classifier Systems, 1–10 (2011)Google Scholar
  17. 17.
    Luqman, M.M., Lladós, J., Ramel, J.Y., Brouard, T.: A Fuzzy-Interval Based Approach for Explicit Graph Embedding. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 93–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Luqman, M.M., Ramel, J.Y., Lladós, J., Brouard, T.: Fuzzy Multilevel Graph Embedding. Pattern Recognition (accepted, 2012), http://dx.doi.org/10.1016/j.patcog.2012.07.029
  19. 19.
    Luqman, M.M., Lladós, J., Ramel, J.Y., Brouard, T.: Dimensionality Reduction for Fuzzy-Interval Based Explicit Graph Embedding. In: GREC, pp. 117–120 (2011)Google Scholar
  20. 20.
    Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI 1992, pp. 129–134. AAAI Press (1992)Google Scholar
  21. 21.
    Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Muhammad Muzzamil Luqman
    • 1
    • 2
  • Jean Yves Ramel
    • 1
  • Josep Lladós
    • 2
  1. 1.Laboratoire d’InformatiqueUniversité François Rabelais de ToursFrance
  2. 2.Computer Vision CenterUniversitat Autònòma de BarcelonaSpain

Personalised recommendations