Advertisement

A Comparison between Structural and Embedding Methods for Graph Classification

  • Albert Solé-Ribalta
  • Xavier Cortés
  • Francesc Serratosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7626)

Abstract

Structural pattern recognition is a well-know research field that has its birth in the early 80s. Throughout 30 years, structures such as graphs have been compared through optimization of functions that directly use attribute values on nodes and arcs. Nevertheless, in the last decade, kernel and embedding methods appeared. These new methods deduct a similarity value and a final labelling between nodes through representing graphs into a multi-dimensional space. It seems that lately kernel and embedding methods are preferred with respect to classical structural methods. However, both approaches have advantages and drawbacks. In this work, we compare structural methods to embedding and kernel methods. Results show that, with the evaluated datasets, some structural methods give slightly better performance and therefore, it is still early to discard classical structural methods for graph pattern recognition.

Keywords

Random Graph Attribute Graph Closure Graph Median Graph Graph Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)Google Scholar
  2. 2.
    Mukherjee, L., Singh, V., Peng, J., Xu, J., Zeitz, M., Berezney, R.: Generalized median graphs and applications. Journal of Combinatorial Optimization 17, 21–44 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hlaoui, A., Wang, S.: Median graph computation for graph clustering. Soft Computing - A Fusion of Foundations, Methodologies and Applications 10, 47–53 (2006)Google Scholar
  4. 4.
    Solé-Ribalta, A., Serratosa, F.: Graduated Assignment Algorithm for Finding the Common Labelling of a Set of Graphs. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 180–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ferrer, M., Serratosa, F., Sanfeliu, A.: Synthesis of Median Spectral Graph. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 139–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node attribute statistics. Pattern Recognition 45(9), 3072–3083 (2012)CrossRefGoogle Scholar
  7. 7.
    Riesen, K., Bunke, H.: Graph classification based on vector space embedding. IJPRAI 23(6), 1053–1081 (2009)Google Scholar
  8. 8.
    Kondor, R.I., Lafferty, J.D.: Diffusion kernels on graphs and other discrete input spaces. In: ICML, pp. 315–322 (2002)Google Scholar
  9. 9.
    Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: COLT, pp. 129–143 (2003)Google Scholar
  10. 10.
    Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recognition 43(4), 1642–1655 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Wong, A.K.C., You, M.: Entropy and distance of random graphs with application to structural pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-7(5), 599–609 (1985)CrossRefGoogle Scholar
  12. 12.
    Jiang, X., Müunger, A., Bunke, H.: On median graphs: Properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1144–1151 (2001)CrossRefGoogle Scholar
  13. 13.
    Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based on new theoretical properties. Pattern Recognition 42(9), 2003–2012 (2009)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ferrer, M., Serratosa, F., Valveny, E.: Evaluation of Spectral-Based Methods for Median Graph Computation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007, Part II, LNCS, vol. 4478, pp. 580–587. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    He, H., Singh, A.K.: Closure-tree: An index structure for graph queries. In: ICDE, p. 38 (2006)Google Scholar
  16. 16.
    Serratosa, F., Alquézar, R., Sanfeliu, A.: Synthesis of function-described graphs and clustering of attributed graphs. IJPRAI 16(6), 621–656 (2002)Google Scholar
  17. 17.
    Serratosa, F., Alquézar, R., Sanfeliu, A.: Function-described graphs for modelling objects represented by sets of attributed graphs. Pattern Recognition 36(3), 781–798 (2003)CrossRefGoogle Scholar
  18. 18.
    Sanfeliu, A., Serratosa, F., Alquézar, R.: Second-order random graphs for modeling sets of attributed graphs and their application to object learning and recognition. IJPRAI 18(3), 375–396 (2004)Google Scholar
  19. 19.
    Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Bunke, H., Riesen, K.: Towards the unification of structural and statistical pattern recognition. Pattern Recognition Letters 33(7), 811–825 (2012)CrossRefGoogle Scholar
  21. 21.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Albert Solé-Ribalta
    • 1
  • Xavier Cortés
    • 1
  • Francesc Serratosa
    • 1
  1. 1.Universitat Rovira i VirgiliSpain

Personalised recommendations