Advertisement

Abstract

Ensemble techniques have been very successful in pattern recognition. In this work we investigate ensemble solution for shape decomposition. A clustering-based approach is proposed to determine a final decomposition from an ensemble of input decompositions. A recently published performance evaluation framework consisting of a benchmark database with manual ground truth together with evaluation measures is used to demonstrate the benefit of the proposed ensemble technique.

Keywords

Dissimilarity Measure Ensemble Technique Benchmark Database Majority Vote Rule Majority Vote Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tulyakov, S., Jaeger, S., Govindaraju, V., Doermann, D.S.: Review of Classifier Combination Methods. In: Marinai, S., Fujisawa, H. (eds.) Machine Learning in Document Analysis and Recognition. SCI, vol. 90, pp. 361–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Jiang, X., Wentker, J., Ferrer, M.: Generalized median string computation by means of string embedding in vector spaces. Pattern Recognition Letters 33, 842–852 (2012)CrossRefGoogle Scholar
  3. 3.
    Jiang, X., Münger, A., Bunke, H.: On median graphs: Properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1144–1151 (2001)CrossRefGoogle Scholar
  4. 4.
    Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. Journal of Pattern Recognition and Artificial Intelligence 25, 337–372 (2011)CrossRefGoogle Scholar
  5. 5.
    Franek, L., Abdala, D.D., Vega-Pons, S., Jiang, X.: Image Segmentation Fusion Using General Ensemble Clustering Methods. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 373–384. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Lien, J.M., Amato, N.M.: Approximate convex decomposition of polygons. Comput. Geom. Theory Appl. 35, 100–123 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kim, D.H., Yun, I.D., Lee, S.U.: A new shape decomposition scheme for graph-based representation. Pattern Recognition 38, 673–689 (2005)CrossRefGoogle Scholar
  8. 8.
    Zeng, J., Lakaemper, R., Yang, X., Li, X.: 2D Shape Decomposition Based on Combined Skeleton-Boundary Features. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 682–691. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Lewin, S., Jiang, X., Clausing, A.: Framework for quantitative performance evaluation of shape decomposition algorithms. In: Proc. of ICPR (2012)Google Scholar
  10. 10.
    Ren, Z., Yuan, J., Li, C., Liu, W.: Minimum near-convex decomposition for robust shape representation. In: Proc. of ICCV, pp. 303–310 (2011)Google Scholar
  11. 11.
    Jiang, X., Marti, C., Irniger, C., Bunke, H.: Distance measures for image segmentation evaluation. EURASIP Journal on Adv. in Signal Processing, 1–10 (2006)Google Scholar
  12. 12.
    DeWinter, J., Wagemans, J.: Segmentation of object outlines into parts: A large-scale integrative study. Cognition 99, 275–325 (2006)CrossRefGoogle Scholar
  13. 13.
    Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. CVIU 73, 441–454 (1999)Google Scholar
  14. 14.
    Dey, T., Giesen, J., Goswami, S.: Shape Segmentation and Matching with Flow Discretization. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 25–36. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Wattuya, P., Jiang, X.: A Class of Generalized Median Contour Problem with Exact Solution. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 109–117. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Wattuya, P., Jiang, X.: Ensemble Combination for Solving the Parameter Selection Problem in Image Segmentation. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 392–401. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sergej Lewin
    • 1
  • Xiaoyi Jiang
    • 1
  • Achim Clausing
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of MünsterMünsterGermany

Personalised recommendations